
LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

LOCKY STRIKE: SMOKING THE
LOCKY RANSOMWARE CODE

Floser Bacurio, Rommel Joven & Roland Dela Paz
Fortinet, Singapore

Email {fbacurio, rjoven, rdelapaz}@fortinet.com

ABSTRACT

In late January this year, an unknown TOR onion-based
ransomware payment page surfaced. The new deep website
didn’t attract much attention; it was probably ‘just another’ script
kiddie trying to get into the ransomware business. However, the
third week of February saw a massive ransomware campaign that
landed on at least 90,000 PCs per day [1] around the world – one
that pointed users to the exact same TOR onion site in order to
pay a ransom. The ransomware’s name was ‘Locky’.

At that point, not only did it become apparent that Locky was the
work of experienced cybercriminals, but it was also clear that
Locky was a major ransomware threat. In fact, Locky’s early
variants showed attributes that led us to believe it would become
a prominent ransomware family alongside CryptoWall and
TeslaCrypt.

In this paper, we will delve into the technical details of the
Locky ransomware. We will focus on three technical aspects: its
system behaviour, domain generation algorithm (DGA), and
C&C communication.

Initially, we will talk about Locky’s prevalence in the wild and
how it behaves when it lands on a PC. We will then look at its
DGA details and how we are able to simulate it in an automated
fashion for C&C domain harvesting.

The paper will also explore Locky’s obfuscated C&C
communications, including its parameters, encryption and
decryption. We will demonstrate how we successfully spoofed
HTTP requests to the C&C servers in order to force them to
respond with certain information, such as targeted countries.

The paper will conclude with some insights into Locky’s
operation and on how these fi ndings ultimately translate to
actionable threat intelligence that can be used to protect users.

1. INTRODUCTION

The Locky ransomware emerged in February this year and
quickly [1] became one of the most prevalent pieces of
ransomware in the wild. Initially, several users posted on forums
seeking help regarding a new ransomware infection that uses the
‘.locky’ extension. Soon after, a massive Locky spam run was
observed by the security industry.

Fortinet was the fi rst to publish in-depth technical details of the
fi rst version of the malware, in which Locky’s Domain
Generation Algorithm (DGA) and C&C communication and
encryption were discussed [2]. While Locky’s code was not
complex at the time, it showed attributes that led Fortinet’s
FortiGuard Lion Team researchers to believe that it would be a

major threat moving forward. FortiGuard Lion Team kept track
[3] of the threat, and the prediction turned out to be correct.

This paper will detail the results of the continuous monitoring of
Locky. The paper will initially discuss Locky’s prevalence in the
wild using FortiGuard Intrusion Prevention System (IPS)
telemetry. It will then delve into a technical analysis of the latest
iteration of Locky’s code. The paper will also discuss the
timeline of Locky’s code and routine updates as well as its C&C
encryption and decryption process. Finally, using the technical
knowledge acquired in the research, a number of
intelligence-gathering approaches will be detailed that can be
used in providing protection to users as quickly as possible.

2. PREVALENCE
Locky’s prevalence is largely driven by an affi liate program – a
program where third-party cybercriminal groups help spread the
Locky binary to potential victims for a pay-per-install
commission. To keep track of installs from third-party affi liates,
Locky binaries have an ‘affi d’ tag embedded in their code. This
code is then sent to the Locky C&C via the malware’s phone
home request.

Table 1 shows a list of affi liate methods that have been observed.

affi d Method

1 Spam email containing an attached JavaScript or MS
Word (macro) downloader

3 Spam email containing an attached JavaScript or MS
Excel (macro) downloader

5 Spam email containing an attached JavaScript
downloader

13 Compromised sites that redirect to Nuclear Exploit
Kit

15 Spam email containing an attached JavaScript or
HTA downloader

Table 1: Locky affi liates.

Figure 1 shows a screenshot of a spam email containing a piece
of JavaScript that downloads Locky.

Figure 1: Spam email related to Locky.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

These affi liates appear to be successful in spreading Locky.
FortiGuard Intrusion Prevention System telemetry shows that
Locky was ranked as the eighth most prevalent threat after only
three months of operation. The statistics listed in Table 2 are
FortiGuard IPS logs from 19 February 2016 to 19 May 2016.

Rank Malware family

1 Andromeda

2 Zeroaccess

3 H-worm

4 Confi cker

5 Necurs

6 Sality

7 CryptoWall

8 Locky

9 Ramnit

10 AAEH

Table 2: FortiGuard top 10 threats from 19 February 2016 to
19 May 2016.

Within the same timeframe, over 150 million total FortiGuard
IPS hits from well-known ransomware families were logged.

Figure 2: Ransomware prevalence from 19 February 2016 to 19 May 2016.

.

Figure 3: Locky daily activity from 19 February 2016 to 19 May 2016.

Locky appeared as the second most prevalent ransomware
family, as shown in Figure 2.

Figure 3 shows the daily activity of Locky in three months of
operation. In total, FortiGuard IPS collected 62,599,466 hits
from Locky C&C communication, averaging 687,906.2 hits
per day.

The heatmap in Figure 4 shows Locky’s global presence.

Figure 4: Heatmap of Locky infections from 19 February 2016
to 19 May 2016.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

3. TECHNICAL ANALYSIS

Overview

Table 3 lists the details of the sample used for analysis
throughout the report.

MD5 94097c46248a187476908e3ff2cb6e97

SHA1 64917aab4c609fa62587d3f06428b0d94e1406f9

SHA256 8c73b04c6450651388d4605de113b156c39e0f22
167b91c07884221a7ef767a7

Compile
timestamp

2008-11-15 19:21:27

Size 147,968 bytes

File type Win32 EXE

Table 3: Details of representative sample.

Figure 5: Locky behaviour fl owchart.

Figure 6: Locky confi guration fi le.

An overview of Locky’s routine upon executing on a PC is
shown in Figure 5.

Confi guration

The malware routine begins by decrypting its confi guration fi le
and C&C (see Figure 6).

Table 4 shows Locky’s confi guration structure.

0x0 0x1 0X2 0X3 0X4 0X5 0X6 0X7

Affi liate ID DGA seed

Sleep (seconds) Drop
svchost.exe

Autorun Check
Russia

C&C
offset

URI (max length = C&C offset -1)

Table 4: Locky’s confi guration structure.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

4 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Figure 7: Locky’s anti-memory dump example.

Figure 8: Code snippet for allocating memory, copying itself and zeroing out its own image.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

5VIRUS BULLETIN CONFERENCE OCTOBER 2016

As of the time of writing this paper, we have observed Locky to
have used the following URIs for its C&C communication:

• main.php

• submit.php

• userinfo.php

• access.cgi

• /upload/_dispatch.php

Anti-memory dump

Locky employs a known technique for circumventing memory
dump that has also been used by other malware families. This
prevents an analyst from directly dumping the memory image of
the malware while running (see Figure7).

To be able to do this, the malware allocates memory using the
fi le’s SizeOfImage value. This is to ensure there is enough
memory allocated in order to successfully copy itself. It then
transfers its execution code to the newly allocated memory.
After that, it zeroes out the values from its own image memory,
starting at the fi rst section and continuing to the end of the
allocated memory (Figure 8).

Locky then checks bases from its confi guration to determine the
user’s language by calling the GetsystemDefaultLangID,
GetUserDefaultLangID and GetUserDefaultUILanguage APIs.
The malware immediately uninstalls itself if it fi nds itself
running on a Russian-language computer.

Confi guration
fl ag(byte)

Value

0 Ignore Russian language

1 Check for Russian language

Table 5: Confi guration fl ags for Russian computers.

Confi guration offset +0x0E – check Russian language:

It continues to check its confi guration to delay execution. It calls
the Sleep API with a duration in seconds depending on the set
value. This could be used as a technique to bypass sandbox and
black-box testing.

Confi guration offset +0x08 – duration of sleep (seconds):

Confi guration fl ag(dword) Value

0 to 0xFFFFFFFF Sleep time in seconds

Table 6: Confi guration for sleep duration.

Figure 10: Code to execute sleep.

The malware then proceeds to create a unique user ID – a
16-byte-long hexadecimal string created locally:

Win_dir = GetWindowsDirectory

Vol_mount_point =
GetVolumeNameForVolumeMountPoint(Win_dir)

GUID = get_GUID(Vol_mount_point)

Hash_md5 = MD5(GUID)

User_id = Hash_md5.uppercase().substr(0,16)

Figure 9: Code to verify if system is using Russian language.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

6 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Figure 11: Unique user ID creation.

It creates a registry subkey where it will store the following
encrypted data:

• RSA public key

• Ransom note in text fi le format

• Ransom note in HTML format

• Infection marker

It then calls the RegQueryValueExA API to get the infection
marker in the registry data, decrypts the data and compares it to
the string ‘YES’ (Figure 13).

Figure 12: Registry subkey creation.

Figure 13: Infection verifi cation.

If it fi nds that the user has already been infected, the malware
will immediately uninstall itself. The malware once again
checks its confi guration to drop and run a copy of itself in the
%temp% folder.

Confi guration offset +0x0C – if 1, copy self as svchost.exe:

Confi guration fl ag(byte) Value

0 N/A

1 Create and run a copy of itself in
%Temp% named as svchost.exe

Table 7: Confi guration fl ag for svchost.exe process.

Figure 14: Code for creating svchost.exe copy.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

7VIRUS BULLETIN CONFERENCE OCTOBER 2016

File encryption

Locky starts by enumerating the drives in the victim machine by
calling the GetDriveType API. It encrypts fi les on the following:

DriveType

DRIVE_REMOVABLE

DRIVE_FIXED

DRIVE_REMOTE

DRIVE_RAMDISK

Table 8: Drive types affected by Locky.

The malware then creates a thread for each logical drive seen in
the victim machine with the targeted drive type. This thread’s
function is to encrypt the fi les located at the pushed root
directory parameter.

Figure 15: File encryption function.

In the enumeration of fi les, Locky skip fi les where the full
pathname contains one of the following strings:

_HELP_instructions.html, _HELP_instructions.bmp,
_HELP_instructions.txt, _Locky_recover_instructions.bmp,
_Locky_recover_instructions.txt, tmp, winnt,
ApplicationData, AppData, ProgramFiles(x86),
ProgramFiles, temp, thumbs.db, $Recycle.Bin, System
VolumeInformation, Boot, Windows

Locky encrypts data and completely changes the fi lenames,
adding the new extension ‘.locky’. It encrypts fi les with the
following extensions:

.n64, .m4a, .m4u, .m3u, .mid, .wma, .fl v, .3g2, .mkv, .3gp,

.mp4, .mov, .avi, .asf, .mpeg, .vob, .mpg, .wmv, .fl a, .swf,

.wav, .mp3, .qcow2, .vdi, .vmdk, .vmx, .wallet, .upk, .sav,

.re4, .ltx, .litesql, .litemod, .lbf, .iwi, .forge, .das, .d3dbsp,

.bsa, .bik, .asset, .apk, .gpg, .aes, .ARC, .PAQ, .tar, .bz2, .tbk,

.bak, .tar, .tgz, .gz, .7z, .rar, .zip, .djv, .djvu, .svg, .bmp, .png,

.gif, .raw, .cgm, .jpeg, .jpg, .tif, .tiff, .NEF, .psd, .cmd, .bat,

.sh, .class, .jar, .java, .rb, .asp, .cs, .brd, .sch, .dch, .dip, .pl,

.vbs, .vb, .js, .h, .asm, .pas, .cpp, .c, .php, .ldf, .mdf, .ibd,

.MYI, .MYD, .frm, .odb, .dbf, .db, .mdb, .sql, .SQLITEDB,

.SQLITE3, .011, .010, .009, .008, .007, .006, .005, .004,

.003, .002, .001, .pst, .onetoc2, .asc, .lay6, .lay,

.ms11(Securitycopy), .ms11, .sldm, .sldx, .ppsm, .ppsx,

.ppam, .docb, .mml, .sxm, .otg, .odg, .uop, .potx, .potm,

.pptx, .pptm, .std, .sxd, .pot, .pps, .sti, .sxi, .otp, .odp, .wb2,

.123, .wks, .wk1, .xltx, .xltm, .xlsx, .xlsm, .xlsb, .slk, .xlw,

.xlt, .xlm, .xlc, .dif, .stc, .sxc, .ots, .ods, .hwp, .602, .dotm,

.dotx, .docm, .docx, .DOT, .3dm, .max, .3ds, .xml, .txt, .CSV,

.uot, .RTF, .pdf, .XLS, .PPT, .stw, .sxw, .ott, .odt, .DOC,

.pem, .p12, .csr, .crt, .key, wallet.dat

Once a fi le to be encrypted is identifi ed, the malware begins
preparing the fi lename that it will be renamed as. The fi rst 16
characters will be the unique ID of the victim and the next 16
characters will be the fi le ID, with the extension ‘.locky’.

Figure 16: Generated fi lename for encrypted fi le.

Below is a code snippet for generating the fi le ID:

x = [0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]
length = 16
fi le_ID = []
while length > 0:
random_num = CryptGenRandom[4]
i = random_num mod 0x10
fi le_ID += x[i]
length --

The malware continues to create a fi le handle to the fi le to be
encrypted; it then proceeds to call the MoveFileExW API in
order to rename the fi le to the 32-character name (with .locky
extension) that was prepared beforehand.

Using the CryptGenRandom API, it generates a random 16-byte
value which will serve as the AES-128 key. Locky then uses
Intel’s Advance Encryption Standard Instruction (AES-NI)
opcode aeskeygenassist to generate the AES round keys.

Figure 17: Locky AES round key generation.

The generated round keys will be used to encrypt targeted fi les
and fi lenames, calling the opcode aesenc (Figure 18).

After encryption, the generated 16 bytes which served as the
AES-128 key, will be encrypted by RSA-2048.

Figure 19 shows the encrypted fi le layout.

The malware deletes the backups by spawning this process by
calling CreateProcessW: vssadmin.exe Delete Shadows /All /
Quiet.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

8 VIRUS BULLETIN CONFERENCE OCTOBER 2016

This will only work for infected users that have Administrator
privileges.

Based on the confi guration, the malware drops an autorun
registry for the malware to run on every start up, as shown in
Table 9.

Confi guration fl ag(byte) Value

0 N/A

1 Create autorun registry

Table 9: Confi guration fl ags for autorun registry creation.

Confi guration offset +0x0dh – autorun confi g.

Figure 20 shows an example of Locky’s autorun registry key.

Figure 20: Locky autorun registry key.

It also creates a registry value to act as an infection marker, as
shown in Figure 21.

Figure 18: Locky AES round key generation via the aesenc and
aesenclast instruction.

Figure 19: Encrypted fi le layout.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

9VIRUS BULLETIN CONFERENCE OCTOBER 2016

Figure 21: Locky infection marker registry.

Figure 22 shows the code that drops the HELP_instructions on
the desktop.

Figure 22: Code to drop help instructions.

Figure 23 shows the modifi cation of wallpaper settings through
the registry.

Figure 23: Code to install wallpaper to the registry.

The code shown in Figure 24 sets the Windows wallpaper (0x14
= SPI_SETDESKWALLPAPER) and opens the dropped
help_instructions fi le.

Figure 24: Code to modify wallpaper and open help
instructions.

Figures 25 and 26 show screenshots of the ransom notes
generated by Locky.

Figure 25: Locky help instructions in BMP format.

Figure 26: Locky help instructions in HTML format.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

10 VIRUS BULLETIN CONFERENCE OCTOBER 2016

4. TIMELINE
Since Locky appeared in the wild, it has continually been
updated by its perpetrators. The monitoring of Locky binaries
appearing in the wild allowed the FortiGuard Lion Team to
track code changes in the malware. Below are some of the
iterations observed over time. It is important to note that the
dates shown represent the earliest date that the updated Locky
binary entered FortiGuard’s tracking system – actual code
changes may have appeared earlier.

16 February 2016

• Sample is not packed

• Hard-coded confi guration is not encrypted

• Hard-coded ‘Locky’ registry key is used

• Malware always runs as fake ‘svchost.exe’ in %Temp%
folder

• Confi guration format is as follows:

{
int Affi liateID;
char servers
}

• DGA TLD is ‘rupweuinytpmusfrdeitbeuknltf’

• C&C urlPath is ‘/main.php’

22 March 2016

• Sample is packed

• Registry key name is generated based on affected
computer’s VolumeGUID

• Running as svchost.exe depends on the confi guration fl ag

• Confi guration format was updated to the following:

{
 int Affi liateID;
 int DGASeed;
 int delaySeconds;
 char bFakeSvchost;
 char bPersistence;
 char bIgnoreRussian;
 char[] ccServers;
}

• DGA TLDs are now ‘ru’, ‘info’, ‘biz’, ‘click’, ‘su’, ‘work’,
‘pl’, ‘org’, ‘pw’, and ‘xyz’

• CC urlPath changed to ‘/main.php’

• DGA code is updated

31 March 2016

• Confi guration is the same structure but is now encrypted

• CC urlPath is ‘/submit.php’

27 April 2016

• Custom encryption of HTTP communication with the C&C
has been updated (details in the next section).

• Confi guration now includes urlPAth with the value
‘/userinfo.php’:

{

 int Affi liateID;
 int DGASeed;
 int delaySeconds;
 char bFakeSvchost;
 char bPersistence;
 char bIgnoreRussian;
 char[] urlPath; // added update char[] ccServers;

}

30 May 2016
• Uses the new URI ‘/access.cgi’

31 May 2016
• Uses the new URI ‘/upload/_dispatch.php’

• Encrypted HTTP POST data is now encoded using percent
encoding.

5. NETWORK BEHAVIOUR
While Locky’s code was unsophisticated when it fi rst came out,
its network behaviour contained indicative signs that it was the
work of experienced cybercriminals and would therefore
become a major threat in the near future. Specifi cally, it
employed a Domain Generation Algorithm, organized C&C
reporting, and custom network communication encryption. This
section will discuss the details of these routines.

Domain Generation Algorithm
Locky’s DGA is a failover routine if the IPs listed in its
confi guration fi le are unreachable. Initially, the malware will try
to connect to all IPs listed in its confi guration. Failing to
connect to any of the IPs will be its trigger to execute the DGA
function (see Figure 27).

Figure 27: Locky’s DGA trigger.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

11VIRUS BULLETIN CONFERENCE OCTOBER 2016

Figure 28 shows an opcode of the actual DGA routine. It is
based on the affected machine’s year, month, day, and a DGA
seed value declared in its confi guration fi le.

Figure 28: Locky’s DGA function.

C&C reporting
To prepare the phone home request, Locky gathers information
about the victim machine and stores it in a key = value format.
It collects the following information:

• Role information

• Windows operating system version

• User language

• Victim MD5 unique identifi er

The role information is identifi ed by making a call to the
DsRoleGetPrimaryDomainInformation API with the local
computer as the argument. This retrieves the state of the directory
service installation and domain data, as shown in Figure 29.

By querying the return data of the API, the malware is able to
determine if the computer is a server, a part of a domain or a
primary domain controller. Table 10 shows the possible return
values.

Integer Computer role

0 DsRole_
RoleStandaloneWorkstation

The computer is a
workstation that is
not a member of a
domain

1 DsRole_
RoleMemberWorkstation

The computer is a
workstation that is
a member of a
domain

2 DsRole_RoleStandaloneServer The computer is a
server that is not a
member of a
domain

3 DsRole_RoleMemberServer The computer is a
server that is a
member of a
domain

4 DsRole_
RoleBackupDomainController

The computer is a
backup domain
controller

5 DsRole_
RolePrimaryDomainController

The computer is a
primary domain
controller

Table 10: DsRoleGetPrimaryDomainInformation return values.

Figure 29: Code to retrieve the state of directory service installation and domain data.

Figure 30: Code to retrieve operating system version.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

12 VIRUS BULLETIN CONFERENCE OCTOBER 2016

The operating system version, on the other hand, is obtained by
querying the OSMajorVersion and OSMinorVersion from the
returned value when calling the GetVersionExA API.

The malware is able to determine the following Windows
versions:

Windows 2000 Windows 8

Windows XP Windows Server 2012

Windows 2003 Windows 8.1

Windows 2003 R2 Windows Server 2012 R2

Windows Vista Windows 10

Windows Server 2008 Windows Server 2016 Technical
Preview

Windows 7 Unknown

Windows Server 2008 R2

The malware then retrieves the local language by calling the
GetUserDefaultUILanguage API, which will be used to
determine the language of the ransom note to be requested from
the C&C, as shown in Figure 31.

Figure 31: Code to retrieve the system’s local language.

Figure 32: Public RSA-1024 key embedded in Locky binary.

Figure 33: Code to generate random bytes for null byte size and AES-256 key generation.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

13VIRUS BULLETIN CONFERENCE OCTOBER 2016

Table 11 lists Locky’s current C&C parameters and their
descriptions.

Key Value Purpose
id Victim’s identifi cation

&act getkey
gettext
gethtml
stats

RSA public key
Ransom note in text
Ransom note in HTML format
Statistics of fi le encryption from victim’s
PC

&affi d
&lang 2 letter

code
Victim’s local language

&corp 0
1
2

Computer is not a member of a domain
Computer is a member of a domain
Computer is a primary domain controller

&serv 0
1

Not server
Server

&os char Windows operating system version

&sp number Service pack

&x64 0
1

Not 64-bit
64-bit

&length number

&failed number Number of failed encrypted fi les

&encrypted number Number of successful encrypted fi les

&path Root path

Table 11: Locky HTTP POST request parameters.

Network encryption – post request encryption

Initially, the malware will obtain a public RSA-1024 key
embedded in the binary fi le to encrypt data in the following
format:

[random 32 bytes AES-256 key + random single byte (null
byte size) + HMAC of plaintext request]

Using the CryptGenRandom() API, it generates a random single
byte that serves as the size of null bytes to be appended to the
request. It also uses this API to generate a 32-byte AES-256 key,
as shown in Figures 33 and 34.

Figure 34: Generated random 32-byte AES key.

The generated 32-byte key has a dual purpose – it is used as a
key for AES-256 encryption and for HMAC hash calculation.

For the HMAC hash calculation, it uses the CryptImportKey()
API to create an RC2 key handle, as shown in Figure 35.

For AES-256 encryption, it uses the AES-NI extended
instruction to generate encryption round keys that will be used
to encrypt the plaintext request (Figures 37 and 38).

Figure 35: Code to set RC2 handle for HMAC calculation.

Figure 36: PUBLICKEYSTRUCT blob header.

Figure 37: Encryption round keys generation routine.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

14 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Figure 39 shows a code snippet of the HMAC calculation of the
plaintext request with null bytes appended. As shown in Figure
40, the result is concatenated to generated random bytes [32
bytes(AES-256 key) + single byte(null byte size)].

Figure 39: Calculation of HMAC of the plaintext request.

Figure 40: Concatenation of HMAC result.

Figure 41 shows the encryption of the plaintext request with
null bytes appended using the generated AES round keys.

Figure 41: Encryption routine of plaintext request.

Using the CryptEncrypt() API, it encrypts [32-bytes (AES-256
key) + single byte(null byte size) + HMAC] using the RSA public
key embedded in the binary, as shown in Figures 42 and 43.

Finally, the encrypted plaintext request and [32-bytes (AES-256
key) + single byte (null byte size) + HMAC] data are combined.

Figure 38: AES round keys generated.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

15VIRUS BULLETIN CONFERENCE OCTOBER 2016

6. INTELLIGENCE EXTRACTION
Apart from sourcing Locky binaries in the wild, malware
metadata can be collected from Locky binaries in an automated
fashion.

Collecting ransomware languages used
The very fi rst version of Locky uses a custom algorithm to
encrypt and decrypt its C&C communication. To get the
ransomware note, it sends the following HTTP request format:

id={randomly generated victim ID}&act=gettext&lang={system
language}

To get the system language, Locky calls the

GetUserDefaultUILanguage API, which returns the language
identifi er for the UI language for the current user. Microsoft’s
Language Identifi er Constant and String provides a list of
country codes for all supported languages.

Locky’s HTTP request can then be spoofed through a script that
feeds all available country codes from Microsoft’s website to the
{system language} parameter, encrypts the request using the
malware’s algorithm, and then sends the encrypted request to a
live Locky C&C server.

Using this approach, the C&C replies for different country
codes are then hashed to identify unique ransomware notes. The
following languages have been identifi ed to be supported by
Locky:

Figure 42: Encrypted plaintext request sample.

Figure 43: Encrypts [32-bytes (AES-256 key) + byte(null byte size) + HMAC].

Figure 44: Encrypted plaintext request + [32-bytes (AES-256 key) + byte(null byte size) + HMAC].

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

16 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Country code Language

de German

en English

es Spanish

fr French

it Italian

ja Japanese

nl Dutch

no Norwegian

pl Polish

pt Portuguese

ro Romanian

sv Swedish

zh Chinese

Table 12: Locky ransomware note languages.

After identifying the above list, a script that simulates Locky’s
decryption algorithm is used to decrypt the ransomware notes.
For unsupported country codes, the default ransomware note
served is in English.

The current iteration of Locky uses a more complex C&C
communication encryption. A similar approach can be used to
collect the supported languages.

Collecting randomly generated domains

Similar to its network encryption, Locky’s Domain Generation
Algorithm can be simulated through a tool that will allow for
proactive harvesting of malicious domains. The next step is to
identify which of the random domains are actually used by the
cybercriminals in order to block them accordingly. In addition,
C&C sinkholes should be properly identifi ed.

One approach is to send a ping request to the domains generated
by the DGA tool. If there is a reply, the next verifi cation stage can
be a spoofed encrypted HTTP request made in a similar fashion
with collecting ransomware notes. The size of the reply can then
be compared to the minimum fi le size of the ransomware note. If
the reply is smaller, then it is likely a sinkhole. Otherwise, a valid
reply indicates that the domain is used by the cybercriminals.

At the time of writing this paper, using this approach
FortiGuard Lion Team has identifi ed many sinkholes created by
security researchers. However, no actual malicious domain has
been observed.

A C source code that generates random domains through
Locky’s DGA is available at the Appendix of this paper.

Harvesting Locky confi guration fi les

The FortiGuard Lion Team has created a system that harvests
Locky confi guration fi les. The system leverages the Cuckoo
Sandbox and is composed of three main parts: a sample
collector, the Cuckoo Sandbox, and a database:

Figure 45: Overview of Locky monitoring system components.

Initially, Cuckoo’s ‘procmemdump’ fl ag is confi gured to ‘yes’ to
enable process memory dumping. ProcMemory – a default
processing module in Cuckoo – is then utilized to confi rm
Locky’s presence using a Yara rule.

The same module is responsible for mapping memory dump. If
Locky is confi rmed to be present, the mapped memory dump
will be parsed to extract Locky’s confi guration fi le.

A fl owchart of this process is shown in Figure 46.

Finally, the extracted confi guration fi le is stored in the database
and extracted IPs and URIs are updated to Fortinet solutions.

Figure 46: Flowchart for extracting Locky confi guration fi le via
Cuckoo Sandbox.

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

17VIRUS BULLETIN CONFERENCE OCTOBER 2016

7. CONCLUSION
Today, ransomware is a major threat that affects many users and
organizations worldwide. The anti-virus industry is seeing a
shift in trade for many cybercriminals, both experienced and
inexperienced, from other cybercrime modus operandi to the
ransomware business. Locky ransomware is a by-product of this
shift.

This research allowed the FortiGuard Lion Team to understand
how, with the right experience and resources, cybercriminals are
able to quickly dominate a specifi c cybercrime area, in this case,
ransomware. The anti-virus industry must respond by closely
monitoring these developments in order to minimize damage to
users. Information sharing across the industry is essential to
maximize the impact of such efforts.

In this paper, Locky’s prevalence, technical analysis,
developments as well as intelligence gathering approaches were
detailed. The FortiGuard Lion Team hopes that the information
shared here will contribute to the industry’s collective effort in
fi ghting the Locky ransomware.

REFERENCES
[1] Dela Paz, R. CryptoWall, TeslaCrypt and Locky: A

Statiscial Perspective. Fortinet Blog.
https://blog.fortinet.com/2016/03/08/cryptowall-
teslacrypt-and-locky-a-statistical-perspective.

[2] Bacurio, F.; Joven, R.; Dela Paz, R. A Closer Look at
Locky Ransomware. Fortinet Blog. https://blog.fortinet.
com/2016/02/17/a-closer-look-at-locky-ransomware-2.

[3] Bacurio, F. U. Diligence is the Mother of Good Locky
Detection. Fortinet Blog. https://blog.fortinet.com/
2016/06/01/diligence-is-the-mother-of-good-locky-
detection.

APPENDIX

IOCs

Added fi les:
%User Temp%\svchost.exe
%Desktop%_HELP_instructions.txt
%Desktop%_HELP_instructions.bmp
%Desktop%_HELP_instructions.html
{folders containing encrypted fi les}_HELP_instructions.
txt

Added registry keys:
key:HKEY_CURRENT_USER\Software\Microsoft\
Windows\CurrentVersion\Run value: opt321
data:”%User Temp%\svchost.exe” or {original fi lepath}

 key:HKEY_CURRENT_USER\Software\{random
characters}
value:{random characters 1}
data: {Hex values}
value:{random characters 2}
data: {Hex values}
value:{random characters 3}

data: {Hex values}
value:{random characters 4}
data: {Hex values}

 key: HKCU\Control Panel\Desktop
value: Wallpaper
data: %Desktop%_HELP_instructions.bmp
Cmd command:
vssadmin.exe Delete Shadows /All /Quiet

Hashes:
A list of Locky SHA-256 hashes is available here:
https://github.com/fortiguard-lion/LockyIOCs/blob/master/
Locky_SHA256_hashes.txt

C&Cs:
A list of collected Locky C&Cs is available here:
https://github.com/fortiguard-lion/LockyIOCs/blob/master/
Locky_C2_IPs.txt

DGA tool in C source code

#include "stdafx.h"
#include <Windows.h>

char *tlds[] = {"ru", "info", "biz", "click", "su",
"work", "pl", "org", "pw", "xyz"};

void LockyDGA(char *domain, int pos, int seed,
SYSTEMTIME systemTime)
{
 int v1;
 int v2;
 int v3;
 int v4;
 int v8;
 int v9;
 int v10;
 int v11;
 int v12;
 int v13;
 int v14;
 int v15;
 int v17;
 int v18;
 int v19;
 int v20;
 char *v21;
 int v7;
 unsigned int v5;
 int v6;

 int var18;

 int var14;

 int var10;

 v1 = pos;

 v2 = seed;

 v3 = 0;

 v5 = systemTime.wDay >> 1;

 v4 = systemTime.wYear;

 v1 = _rotl(v1, 0x15);

 v6 = _rotl(v2, 0x11);

 var18 = v6 + v1;

 var14 = v5;

 var10 = 7;

 while (var10 > 0)

LOCKY STRIKE: SMOKING THE LOCKY RANSOMWARE CODE BACURIO ET AL.

18 VIRUS BULLETIN CONFERENCE OCTOBER 2016

 {

 v7 = _rotr(0xB11924E1 * (v4 + v3 + 0x1BF5), 7);

 v8 = (v7 + 0x27100001) ^ v3;

 v9 = _rotr(0xB11924E1 * (v8 + v2), 7);

 v10 = (v9 + 0x27100001) ^ v8;

 v11 = _rotr(0xB11924E1 * (v5 + v10), 7);

 v12 = 0xD8EFFFFF - v11 + v10;

 v13 = _rotr(0xB11924E1 * (systemTime.wMonth + v12
- 0x65CAD), 7); v14 = v12 + v13 + 0x27100001;

 v15 = _rotr(0xB11924E1 * (v14 + var18), 7);

 v3 = (v15 + 0x27100001) ^ v14;

 ++v4;

 var10 = var10 - 1;
 v5 = var14;

 }
 var18 = v3 % 0xBu + 7;
 var10 = 0;

 if (var18 != 0)
 {

 do
 {
 v17 = _rotl(v3, var10);

 v18 = _rotr(0xB11924E1 * v17, 7);

 v3 = v18 + 0x27100001;

 domain[var10++] = v3 % 0x19u + 'a';

 } while (var10 < var18);

 }

 domain[var10++] = '.';
 v19 = _rotr(0xB11924E1 * v3, 7);

 v20 = 0;
 v21 = tlds[(v19 + 0x27100001) % (sizeof(tlds) /
 sizeof(tlds[0]))];

 do
 {

 if (!v21[v20])
 {

 break;

 }
 domain[var10++] = v21[v20++];
 } while (v20 < 5);
}

void showHelpInfo(char *s)
{

 printf("Usage : %s [-option] [argument]\n", s);

 printf("option: -h Show help information\n");

 printf(" -s Seed from Locky Confi g\n");

 printf(" -d Date with format [yyyy-mm-dd]\n");

 printf(" -n Max count of Domain generated\n");

 printf("Default: -d {current date} -n {7}");
}

int main(int argc, char* argv[])
{
 char domain[40];

 int pos = 0;

 SYSTEMTIME systemTime; int max = 7;

 int seed = 0;

 GetSystemTime(&systemTime);

 if (argc > 1)

 {
 for (int i = 1; i < argc; i++)
 {
 if (i + 1 > argc)
 {
 break;
 }
 if (strcmp(argv[i], "-h") == 0)
 {
 showHelpInfo(argv[0]);
 return 0;
 }
 if (strcmp(argv[i], "-d") == 0)
 {
 char *date = argv[i + 1];
 char buf[5];
 strncpy_s(buf, 5, date, 4);
 if (atoi(buf) != 0) {
 systemTime.wYear = atoi(buf); }
 memset(buf, 0, sizeof(buf));
 strncpy_s(buf, 5, date + 5, 2);
 if (atoi(buf) != 0)
 {
 systemTime.wMonth = atoi(buf); }
 memset(buf, 0, sizeof(buf));
 strncpy_s(buf, 5, date + 8, 2);
 if (atoi(buf) != 0)
 {
 systemTime.wDay = atoi(buf);
 }

 }
 if (strcmp(argv[i], "-n") == 0)
 {
 if (atoi(argv[i + 1]) != 0)
 {
 max = atoi(argv[i + 1]); }
 }
 if (strcmp(argv[i], "-s") == 0)
 {
 if (atoi(argv[i + 1]) != 0)
 {
 seed = atoi(argv[i + 1]);
 }
 }
 }
 }

 do
 {
 memset(domain, 0, sizeof(domain));
 LockyDGA(domain, pos, seed, systemTime);
 printf("DGA %d = %s\n", pos++, domain);
 } while (pos < max);

return 0;
}

