
© Copyright Fortinet Inc. All rights reserved.

Generic and Static Detection of Mobile Malware Using
Machine Learning

Minh Tran

https://www.linkedin.com/in/minhtq/

Agenda

• Introduction

• Background

• Architecture

• Results

• Conclusions

Introduction

• Sr. Security Researcher @ Fortinet (FortiGuard)

• Sr. Malware Research Engineer @ Palo Alto Networks

• 13+ years of experience

• PhD Candidate @ North Carolina State University

• Master of Science - 2011

• #56 of Microsoft's Top 100 Security Researchers

• https://blogs.technet.microsoft.com/msrc/2018/08/08/microsofts-top-

100-security-researchers-black-hat-2018-edition/

•
• *Opinions are my own

Motivating Example

• Marcher!

• Social engineering attacks

• Corrupted

Why Signature-based and Behavior-based
Malware Detection Are Still not Sufficient?

• Not resilient against variations.

• Malware samples can be corrupted

• Rooms for improvement!

Key Insights

• Legit: com.symantec.mobilesecurity

• vs

• Marcher: etcqlnzwauf.hflivryhdnjb

• Key Insight 1: obfuscation.

• Use your enemy's strength against them!

• Social engineering attacks

• A benign app should NOT do both at the same time!

• Popular apps

Machine Learning To The Rescue

Machine Learning To The Rescue

• Classify package names:

• N-gram

• Classify images:

• Neural Networks

• PoC: Inception-v4:

• 43 layers (deep learning!)

• Lower computational cost (vs e.g. VGGNet)

**Credit belongs to the respective owners

Workflow to Train the DNN

• Building corpus of icons

• Training of the neural network

• Produce model files

• Evaluation using the test corpus

Building Corpus of Icons

• Crawling for icons of legitimate apps (e.g.

WhatsApp) using Google Images search

• Labeling & grouping into classes. One class

corresponds to one app.

Training of the Neural Network Model

▪ Converting icons to internal format

▪ Training the neural network for n steps (e.g. n =

3000)

▪ Producing the final model (i.e. model files with the

optimal weights & biases for neurons)

▪ Evaluation based on testing corpus

Training of the Language Model

▪ Building corpus of words/domain names/package

names (e.g. Alexa, Majestic Million)

▪ Training (N-gram with n is a customizable length

parameter e.g. n = 2)

▪ Labeling (malicious, benign) based on ground truths

(from existing malware collections)

▪ Producing the final model

▪ Evaluation based on testing corpus

Workflow to Classify
Samples

▪ Parsing packages

▪ Extracting package name and feed into the

Language Model

▪ Extracting icons and feed into the Neural

Network Model

Results

▪ Test set: 306847 samples

▪ 2gram total detection: right 271133 vs wrong 35714 = 11.64%

FN 88.13% FP 11.87%

▪ 3gram total detection: right 277024 vs wrong 29823 = 9.72%

FN 78.88% FP 21.12%

▪ 4gram total detection: right 274412 vs wrong 32435 = 10.57%

FN 84.69% FP 15.31%

Results

▪ Our system classifies all Android malware, but especially

effective against social engineering malware who masquerade

as legitimate apps

▪ Our system has better coverage: many samples can be

corrupted and our system still works because fundamentally

speaking it is static analysis whereas solutions based on

dynamic analysis fail.

▪ Our system has better performance: it is faster than dynamic

analysis because no execution in sandbox is required

▪ Effectively speaking, detection rate is 99.928%.

Conclusions

• ML is valuable to malware detection

• Future research

• Increasing the quality and the quantity of the data set: different

languages etc

• Improving training performance: distributed training etc

© Copyright Fortinet Inc. All rights reserved.

Questions

