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Introduction

• Sr. Security Researcher @ Fortinet (FortiGuard)

• Sr. Malware Research Engineer @ Palo Alto Networks

• 13+ years of experience

• PhD Candidate @ North Carolina State University

• Master of Science - 2011

• #56 of Microsoft's Top 100 Security Researchers

• https://blogs.technet.microsoft.com/msrc/2018/08/08/microsofts-top-

100-security-researchers-black-hat-2018-edition/

•
• *Opinions are my own



Motivating Example

• Marcher!

• Social engineering attacks

• Corrupted



Why Signature-based and Behavior-based 
Malware Detection Are Still not Sufficient?

• Not resilient against variations.

• Malware samples can be corrupted

• Rooms for improvement!



Key Insights

• Legit: com.symantec.mobilesecurity

• vs

• Marcher: etcqlnzwauf.hflivryhdnjb

• Key Insight 1: obfuscation.

• Use your enemy's strength against them!



• Social engineering attacks



• A benign app should NOT do both at the same time! 

• Popular apps



Machine Learning To The Rescue



Machine Learning To The Rescue

• Classify package names: 

• N-gram

• Classify images:

• Neural Networks



• PoC: Inception-v4:

• 43 layers (deep learning!)

• Lower computational cost (vs e.g. VGGNet) 

**Credit belongs to the respective owners



Workflow to Train the DNN

• Building corpus of icons

• Training of the neural network

• Produce model files

• Evaluation using the test corpus



Building Corpus of Icons

• Crawling for icons of legitimate apps (e.g. 

WhatsApp) using Google Images search

• Labeling & grouping into classes. One class 

corresponds to one app. 



Training of the Neural Network Model

▪ Converting icons to internal format

▪ Training the neural network for n steps (e.g. n = 

3000)

▪ Producing the final model (i.e. model files with the 

optimal weights & biases for neurons)

▪ Evaluation based on testing corpus



Training of the Language Model

▪ Building corpus of words/domain names/package 

names (e.g. Alexa, Majestic Million)

▪ Training (N-gram with n is a customizable length 

parameter e.g. n = 2)

▪ Labeling (malicious, benign) based on ground truths 

(from existing malware collections)

▪ Producing the final model

▪ Evaluation based on testing corpus



Workflow to Classify 
Samples

▪ Parsing packages

▪ Extracting package name and feed into the 

Language Model

▪ Extracting icons and feed into the Neural 

Network Model



Results

▪ Test set: 306847 samples

▪ 2gram total detection: right 271133 vs wrong 35714 = 11.64% 

FN 88.13% FP 11.87%

▪ 3gram total detection: right 277024 vs wrong 29823 = 9.72% 

FN 78.88% FP 21.12%

▪ 4gram total detection: right 274412 vs wrong 32435 = 10.57% 

FN 84.69% FP 15.31%



Results

▪ Our system classifies all Android malware, but especially 

effective against social engineering malware who masquerade 

as legitimate apps

▪ Our system has better coverage: many samples can be 

corrupted and our system still works because fundamentally 

speaking it is static analysis whereas solutions based on 

dynamic analysis fail. 

▪ Our system has better performance: it is faster than dynamic 

analysis because no execution in sandbox is required

▪ Effectively speaking, detection rate is 99.928%.



Conclusions

• ML is valuable to malware detection

• Future research

• Increasing the quality and the quantity of the data set: different 

languages etc

• Improving training performance: distributed training etc
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Questions 


