
Dissect Tor Bridge and Pluggable
Transport

Xiaopeng Zhang & Peixue Li

Fortinet's FortiGuard Labs

Who We Are?

• Xiaopeng Zhang

 Senior security researcher at Fortinet’s FortiGuard Labs

 Has worked in cyber security for more than 13 years

 Email: xpzhang@fortinet.com

• Peixue Li

 Director at Fortinet’s FortiGuard Labs

 Has worked in cyber security for more than 15 years

 Email: pxli@fortinet.com

Why We Did This Research?

• Some customers need to identify Tor traffic

• Evaluate the security of Tor network

• Monitor the threats in dark web

Agenda

• Introduction

• The Tor Network

• Anti-Censorship

 The Built-In Obfs4 Bridges

 How Tor Client Connects To Obfs4 Bridge

 How Obfs4 Transforms Tor-Encrypted Traffic

• Conclusion

• Q&A

Introduction

What Is TOR?
• An open source project for anonymous communication

and the name is derived from its original project name
called “The Onion Router”

• Tor traffic goes through a worldwide overlay network
comprising thousands of volunteer-run relays to
conceal users’ identity, location and online activity
from network surveillance or traffic analysis (client side
anonymity)

• Tor client periodically creates virtual circuits comprising
3 randomly-selected relays through the Tor network,
then routes traffic to the destination using onion
routing technique

What Is TOR? (continued)

• Tor network also provides anonymous onion
service (e.g. websites) which can host
censorship-resistant content (server side
anonymity)

• An onion service is accessed through its onion
address usually via the Tor browser

• Tor browser (https://www.torproject.org) is
built based on Mozilla Firefox

• Tor also provides features for anti-censorship

Two Firefox Extensions For Tor

• TorLauncher is in charge of starting Tor main process
tor.exe.

• Torbutton manages all interfaces about Tor, such as Tor
Network Settings, Tor Circuit, Tor About and so on.

Location:

“TOR_INSTALLATION_FOLDER\Browser\TorBrowser\Data\Browse
r\profile.default\extensions\”

Two Firefox Extensions For Tor

• TorLauncher is in charge of starting Tor main process
tor.exe.

• Torbutton manages all interfaces about Tor, such as Tor
Network Settings, Tor Circuit, Tor About and so on.

Location:

“TOR_INSTALLATION_FOLDER\Browser\TorBrowser\Data\Browse
r\profile.default\extensions\”

Two Firefox Extensions For Tor

• TorLauncher is in charge of starting Tor main process
tor.exe.

• Torbutton manages all interfaces about Tor, such as Tor
Network Settings, Tor Circuit, Tor About and so on.

Location:

“TOR_INSTALLATION_FOLDER\Browser\TorBrowser\Data\Browse
r\profile.default\extensions\”

Extensions Integrated
Into Options Since Tor Browser 9.0

• TorLauncher is in charge of starting Tor main process
tor.exe.

• Torbutton manages all interfaces about Tor, such as Tor
Network Settings, Tor Circuit, Tor About and so on.

Location:

“TOR_INSTALLATION_FOLDER\Browser\TorBrowser\Data\Browse
r\profile.default\extensions\”

Analysis Environment
• Windows 7 32-bit SP1

• Tor Browser 8.0 (based on Firefox 60.2.0esr)

• TorLauncher 0.2.16.3 (extension)

• Torbutton 2.0.6 (extension)

The Tor Network

Tor Communication Flow Chart

Tor Relays

• Most Tor relays are listed in the main Tor directory which can be
accessed by anyone

• Tor network status can be found on http://torstatus.blutmagie.de/

Access Website Through Tor Network

To access a destination through Tor network, a virtual circuit
should be created first.

Tor Network & Circuit

How Tor Circuit is Created?
1. Tor client randomly selects 3 relays as entry, middle

and exit nodes from the node list provided by a
directory node

2. Tor client establishes a connection with the entry
node using its public key and agrees on a session
key

3. Through the entry node, Tor client establishes a
connection with the middle node using its public
key and agrees on a session key

4. Through the entry & middle nodes, Tor client
establishes a connection with the exit node using its
public key and agrees on a session key

Onion Routing

• In above figure, Relay1, Relay2 and Relay3 are chosen to create the circuit.
• Each relay’s public IP, port and public key are got from the main Tor directory.
• Packets are encapsulated in layers of encryption just like layers of an onion.

(Entry Node) (Middle Node) (Exit Node)

Request Packet Encryption/Decryption (1)

Encrypted by relay1’s session key

Encrypted by relay2’s session key

Encrypted by relay3’s session key

Original packet

Tor client encrypts the original packet in a three-layered manner with the session key of
these 3 relays from the farthest to the nearest, then sends it to the entry node.

(Entry Node) (Middle Node) (Exit Node)

Request Packet Encryption/Decryption (2)

Encrypted by relay2’s session key

Encrypted by relay3’s session key

Original packet

The entry node decrypts the packet with its session key and gets the info of the middle
node, then sends the decrypted packet to the middle node.

(Entry Node) (Middle Node) (Exit Node)

Request Packet Encryption/Decryption (3)

Encrypted by relay3’s session key

Original packet

The middle node decrypts the packet with its session key and gets the info of
the exit node, then sends the decrypted packet to the exit node.

(Entry Node) (Middle Node) (Exit Node)

Request Packet Encryption/Decryption (4)

Original packet

The exit node decrypts the packet with its session key and gets the original
packet, then sends it to the destination.

(Entry Node) (Middle Node) (Exit Node)

• Each relay encrypts the packet with its session key, then sends it to next relay.
• Tor client receives the packet with 3 layers of encryption, then decrypts it 3 times to

get the original packet.

(Entry Node) (Middle Node) (Exit Node)

Response Packet Encryption/Decryption

• Each relay encrypts the packet with its session key, then sends it to next relay.
• Tor client receives the packet with 3 layers of encryption, then decrypts it 3 times to

get the original packet.

(Entry Node) (Middle Node) (Exit Node)

Response Packet Encryption/Decryption

• Each relay encrypts the packet with its session key, then sends it to next relay.
• Tor client receives the packet with 3 layers of encryption, then decrypts it 3 times to

get the original packet.

(Entry Node) (Middle Node) (Exit Node)

Response Packet Encryption/Decryption

• Each relay encrypts the packet with its session key, then sends it to next relay.
• Tor client receives the packet with 3 layers of encryption, then decrypts it 3 times to

get the original packet.

(Entry Node) (Middle Node) (Exit Node)

Response Packet Encryption/Decryption

Anonymity

From the above analysis, we can see
• Each relay of a given circuit only knows the

previous and next relay
• Only the Entry relay knows the Source, but it

doesn’t know the Destination
• Only the Exit relay knows the Destination, but it

doesn’t know the Source

So Tor network can provide good anonymous
communication.

Censorship

But, the normal Tor communication is not
resistant to Internet censorship because

• Tor relays are listed in the main Tor directory,
so anyone can get them

• Tor traffic uses vanilla Tor protocol which is
identifiable

Then, how to solve these issues to circumvent
censorship?

Anti-Censorship

Anti-Censorship

• Tor uses two techniques to circumvent
sophisticated censorship

 Pluggable Transport

 Bridges

Pluggable Transport (PT)
• PT manipulates all Tor traffic between the client and

its first relay so that it’s not identifiable as Tor traffic.

• Tor supports these PTs: Obfs3, Obfs4, FTE, Meek and
ScrambleSuit

Pluggable Transport (PT)
• PT manipulates all Tor traffic between the client and

its first relay so that it’s not identifiable as Tor traffic.

• Tor supports these PTs: Obfs3, Obfs4, FTE, Meek and
ScrambleSuit

Bridges

• Bridge relays (or “Bridges” for short) are sort
of Tor relays that are not listed in the main Tor
directory

• There is no easy way to get the complete list
of the Tor Bridges

• Nobody can block all the Tor Bridges by IP and
Port

Obfs4 Bridge

• Obfs4, an obfuscator, was developed and
maintained by Yawning Angel. It is an open
source project written in Go language.

• Obfs4 is not like Obfs3, but is much closer to
ScrambleSuit.

• Obfs4 is strongly recommended on Tor
website.

• Tor browser comes with some default built-in
Obfs4 bridges.

Tor With Obfs4 Bridge Flow Chart

The Built-In Obfs4 Bridges

Relationship of The Tor Processes

 “firefox.exe” (TorLauncher) starts “tor.exe”

 “tor.exe” starts “obfs4proxy.exe”

 “obfs4proxy.exe”’s task is to communicate

with Obfs4 Bridge relays

Relationship of The Tor Processes

 “firefox.exe” (TorLauncher) starts “tor.exe”

 “tor.exe” starts “obfs4proxy.exe”

 “obfs4proxy.exe”’s task is to communicate

with Obfs4 Bridge relays

Find The Built-In Obfs4 Bridges By RE (1)

• Are the built-in Obfs4 bridges hardcoded in
“obfs4proxy.exe”?

• Trace from MSAFD_ConnectEx() of
mswsock.dll

Find The Built-In Obfs4 Bridges By RE (1)

• Are the built-in Obfs4 bridges hardcoded in
“obfs4proxy.exe”?

• Trace from MSAFD_ConnectEx() of
mswsock.dll

Find The Built-In Obfs4 Bridges By RE (2)

• The Bridge IP address and Port come from its
parent process tor.exe over SOCKS5 on the
loopback interface (127.0.0.1).

• The IP address and Port of an Obfs4 Bridge are
processed in an event callback function.

Find The Built-In Obfs4 Bridges By RE (2)

• The Bridge IP address and Port come from its
parent process tor.exe over SOCKS5 on the
loopback interface (127.0.0.1).

• The IP address and Port of an Obfs4 Bridge are
processed in an event callback function.

Find The Built-In Obfs4 Bridges By RE (2)

• The Bridge IP address and Port come from its
parent process tor.exe over SOCKS5 on the
loopback interface (127.0.0.1).

• The IP address and Port of an Obfs4 Bridge are
processed in an event callback function.

• By reverse tracing the IP&Port in “tor.exe”, I
finally found a bunch of Obfs4 Bridge nodes in
a data structure of the command “SETCONF”
as its body.

Find The Built-In Obfs4 Bridges By RE (2)

• The Bridge IP address and Port come from its
parent process tor.exe over SOCKS5 on the
loopback interface (127.0.0.1).

• The IP address and Port of an Obfs4 Bridge are
processed in an event callback function.

• By reverse tracing the IP&Port in “tor.exe”, I
finally found a bunch of Obfs4 Bridge nodes in
a data structure of the command “SETCONF”
as its body.

Find The Built-In Obfs4 Bridges By RE (3)

• Loaded automatically from a local profile file
by Firefox when it starts, and parsed later by
TorLauncher.

Find The Built-In Obfs4 Bridges By RE (3)

• Loaded automatically from a local profile file
by Firefox when it starts, and parsed later by
TorLauncher.

Find The Built-In Obfs4 Bridges By RE (3)

• Loaded automatically from a local profile file
by Firefox when it starts, and parsed later by
TorLauncher.

• “SETCONF” command body was generated
with all built-in Obfs4 Bridge information by
TorLauncher that runs in firefox.exe.

• It was then sent to tor.exe via a control port
on loopback interface.

Find The Built-In Obfs4 Bridges By RE (3)

• Loaded automatically from a local profile file
by Firefox when it starts, and parsed later by
TorLauncher.

• “SETCONF” command body was generated
with all built-in Obfs4 Bridge information by
TorLauncher that runs in firefox.exe.

• It was then sent to tor.exe via a control port
on loopback interface.

Find The Built-In Obfs4 Bridges By RE (3)

• Loaded automatically from a local profile file
by Firefox when it starts, and parsed later by
TorLauncher.

• “SETCONF” command body was generated
with all built-in Obfs4 Bridge information by
TorLauncher that runs in firefox.exe.

• It was then sent to tor.exe via a control port
on loopback interface.

How Tor Client Connects To Obfs4
Bridge

Tor Browser (Firefox) Starts With Obfs4

• Extensions TorLauncher and TorButton

• TorLauncher starts tor.exe (Tor Client)

Tor Browser (Firefox) Starts With Obfs4

• Extensions TorLauncher and TorButton

• TorLauncher starts tor.exe (Tor Client)

Tor Listens On Loopback Interface

• Loopback address: 127.0.0.1

• Tor control port: TCP Port 9151

• Tor proxy port: TCP Port 9150

Tor Listens On Loopback Interface

• Loopback address: 127.0.0.1

• Tor control port: TCP Port 9151

• Tor proxy port: TCP Port 9150

Tor Listens On Loopback Interface

• Loopback address: 127.0.0.1

• Tor control port: TCP Port 9151

• Tor proxy port: TCP Port 9150

Tor Browser Sends SETCONF To Tor

Tor Starts Obfs4Proxy

• Tor parses SETCONF command and starts
obfs4proxy.exe (Obfs4Proxy or Obfs4 Client)

• Obfs4Proxy informs Tor of its TCP Port number
that listens on loopback through a inter-
process pipe

Tor Starts Obfs4Proxy

• Tor parses SETCONF command and starts
obfs4proxy.exe (Obfs4Proxy or Obfs4 Client)

• Obfs4Proxy informs Tor of its TCP Port number
that listens on loopback through a inter-
process pipe

Tor Starts Obfs4Proxy

• Tor parses SETCONF command and starts
obfs4proxy.exe (Obfs4Proxy or Obfs4 Client)

• Obfs4Proxy informs Tor of its TCP Port number
that listens on loopback through a inter-
process pipe

• Tor then separately sends the Bridges to that
TCP Port

Tor Starts Obfs4Proxy

• Tor parses SETCONF command and starts
obfs4proxy.exe (Obfs4Proxy or Obfs4 Client)

• Obfs4Proxy informs Tor of its TCP Port number
that listens on loopback through a inter-
process pipe

• Tor then separately sends the Bridges to that
TCP Port

Obfs4Proxy Connects To Obfs4 Bridges

• Obfs4Proxy uses Bridge information received
from Tor to establish connection with Obfs4
Bridge

• Obfs4Proxy sends “05 00 00 01 00 00 00 00 00
00” to Tor once connection is established

Obfs4Proxy Connects To Obfs4 Bridges

• Obfs4Proxy uses Bridge information received
from Tor to establish connection with Obfs4
Bridge

• Obfs4Proxy sends “05 00 00 01 00 00 00 00 00
00” to Tor once connection is established

Obfs4Proxy Connects To Obfs4 Bridges

• Obfs4Proxy uses Bridge information received
from Tor to establish connection with Obfs4
Bridge

• Obfs4Proxy sends “05 00 00 01 00 00 00 00 00
00” to Tor once connection is established

Obfs4Proxy Connects To Obfs4 Bridges

• Obfs4Proxy uses Bridge information received
from Tor to establish connection with Obfs4
Bridge

• Obfs4Proxy sends “05 00 00 01 00 00 00 00 00
00” to Tor once connection is established

• Tor encrypts the proxy data from Firefox, then
sends Tor-encrypted data to Obfs4Proxy which
transforms and transports it to Obfs4 Bridge

How Obfs4 Transforms Tor-Encrypted
Traffic

Obfs4 Bridge Configuration Line

• “SETCONF” is the command name and followed are all
built-in Obfs4 Bridges

• One bridge configuration line contains:

 Bridge type: obfs4

 Bridge server IP address and port: 109.105.109.165:10527

 Bridge ID: 14H long hexadecimal

 Bridge cert: Base64-encoded nodeID, idPublicKey, which

participate in generating common keySeed

 Bridge iat-mode: iat mode flag can be “0”, “1” and “2”

Elliptic Curve Cryptography (ECC)

• Obfs4 Bridge uses the ECC algorithm

to make secure communication

• ECC is a public key encryption technique based on
elliptic curve theory

• The ECC algorithm Obfs4 used is implemented in
curve25519 package in Go language

• Two functions: ScalarBaseMult() and ScalarMult()

Obfs4 KeyPair

• Both client and server sides must have their own KeyPair

• Public Key is computed from Private Key

• Representative can be used to restore Public Key

// Keypair is a Curve25519 keypair with an optional Elligator representative.
// As only certain Curve25519 keys can be obfuscated with Elligator, the
// representative must be generated along with the keypair.
type Keypair struct {

public *PublicKey
private *PrivateKey
representative *Representative

}

Obfs4 Client Handshake
Size Content

20H Client’s representative (Keypair.representative)

variable Padding data, data size range: 4Dh~1FC0h

10H mark, HMAC of Client’s representative

10H HMAC of all the above data plus the hour value of current system time in UNIX Epoch time

Obfs4 Client Handshake
Size Content

20H Client’s representative (Keypair.representative)

variable Padding data, data size range: 4Dh~1FC0h

10H mark, HMAC of Client’s representative

10H HMAC of all the above data plus the hour value of current system time in UNIX Epoch time

Obfs4 Client Handshake
Size Content

20H Client’s representative (Keypair.representative)

variable Padding data, data size range: 4Dh~1FC0h

10H mark, HMAC of Client’s representative

10H HMAC of all the above data plus the hour value of current system time in UNIX Epoch time

Obfs4 Client Handshake
Size Content

20H Client’s representative (Keypair.representative)

variable Padding data, data size range: 4Dh~1FC0h

10H mark, HMAC of Client’s representative

10H HMAC of all the above data plus the hour value of current system time in UNIX Epoch time

Obfs4 Client Handshake
Size Content

20H Client’s representative (Keypair.representative)

variable Padding data, data size range: 4Dh~1FC0h

10H mark, HMAC of Client’s representative

10H HMAC of all the above data plus the hour value of current system time in UNIX Epoch time

Server Verifies Client’s Handshake

• Generate server’s own KeyPair instance

• Verify client’s handshake and restore client’s
public key

• ECC Scalar Multiplication - curve25519.ScalarMult

(server’s private key, client’s public key)

Obfs4 Server’s Handshake

• Similar to client’s handshake packet

• Server’s auth is added for client
authentication

• Use a different padding data size range

Size Content
20H Server’s representative (Keypair.representative)

20H Server’s auth

variable Padding data, size range: 0h~1F73h

10H mark, HMAC of Server’s representative

10H HMAC of all the above data plus the hour value of current system time in UNIX Epoch time

Generate Common keySeed
and Verify Server’s Auth

• Client calls curve25519.ScalarMult (client’s
private key, server’s public key) and
curve25519.ScalarMult (client’s private key ,
server’s id public key)

• Generate the common keySeed with above
two function results and verify server’s auth.

• Final Encryption/Decryption keys are
generated based on the common keySeed

Obfs4 Seals/Unseals Tor Payload

• Write()

– makePacket()

• Encrypt (encode) Tor Payload (conn.encoder.Encode())

– Append random padding to encrypted payload

– IAT-Mode

• Read()

– readPackets()

• Decrypt (decode) Tor Payload (conn.decoder.Decode())

IAT Mode
• MTU (Maximum Transmission Unit)

• Network device splits large size packets into MTU size
packets, which can be easily reassembled and identified

• IAT (Inter-Arrival Timing) mode

• The value can be 0, 1 and 2

– 0 IAT mode disabled for this bridge relay

– 1 split into MTU size packets, 1448 bytes

– 2 split into variable size packets

IAT Mode
• MTU (Maximum Transmission Unit)

• Network device splits large size packets into MTU size
packets, which can be easily reassembled and identified

• IAT (Inter-Arrival Timing) mode

• The value can be 0, 1 and 2

– 0 IAT mode disabled for this bridge relay

– 1 split into MTU size packets, 1448 bytes

– 2 split into variable size packets

IAT Mode
• MTU (Maximum Transmission Unit)

• Network device splits large size packets into MTU size
packets, which can be easily reassembled and identified

• IAT (Inter-Arrival Timing) mode

• The value can be 0, 1 and 2

– 0 IAT mode disabled for this bridge relay

– 1 split into MTU size packets, 1448 bytes

– 2 split into variable size packets

Conclusion

The Tor traffic powered by Obfs4-bridge is harder
to be censored because:

• Obfs4 encrypts Tor traffic

• Obfs4 packet size is obfuscated by adding
padding data, even the Handshake packet

• Obfs4 large packet can be split by IAT mode

• Besides those built-in Obfs4 Bridges, Tor
provides three other ways to obtain more
private Obfs4 Bridges

Hard to Censor

Three Ways To Obtain Obfs4 Bridge

• Request through Tor Network
Settings.

Three Ways To Obtain Obfs4 Bridge

• Request through Tor Network
Settings.

Three Ways To Obtain Obfs4 Bridge

• Request through Tor Network
Settings.

• Request on Tor Web Site.

• Request via E-Mail.

Three Ways To Obtain Obfs4 Bridge

• Request through Tor Network
Settings.

• Request on Tor Web Site.

• Request via E-Mail.

Three Ways To Obtain Obfs4 Bridge

• Request through Tor Network
Settings.

• Request on Tor Web Site.

• Request via E-Mail.

References

• https://www.torproject.org/

• https://en.wikipedia.org/wiki/Tor_(anonymity_netw
ork)

• https://github.com/Yawning/obfs4

• https://blog.torproject.org/tor-heart-bridges-and-
pluggable-transports

• https://bridges.torproject.org/bridges?transport=obf
s4

• https://en.wikipedia.org/wiki/Onion_routing

Thank You!

