
Deep Technical Analysis of the Spyware FlexiSpy for Android

By Kai Lu(@k3vinlusec) from FortiGuard Labs of Fortinet

The whole analysis includes five parts below.

Part 1: Deep Dig into The First Installation of the Spy App

Background

FlexiSpy for android is an android spy app with full IM tracking, VoIP call recording& live call interception, it also

can spy on messages, GPS, Multimedia, Internet, Applicaions, etc. On April 22 2017, Flexidie released the source

code and binaries for FlexiSpy’s android spyware. It can be download from Github https://github.com/Te-

k/flexidie. FortiGuard Labs has been reviewing this data, and our analysis is included in this and the follow-up

parts.

Figure 1. Source code and binaries of FlexiSpy on Github

To start, the version of FlexiSpy for Android we used for this analysis is 5002_-2.25.1. Since then, version

5002_2.25.2 has been released. I think that there is a very minor difference between them. It should not affect our

analysis.

First Look at FlexiSpy for android

FlexiSpy’s android spy app disguises as a system update app. Its package name is com.android.systemupdate . The

screenshot of the app icon is shown below.

https://github.com/Te-k/flexidie
https://github.com/Te-k/flexidie
https://github.com/Te-k/flexidie/blob/master/binaries/5002_2.25.2_green.APK

Figure 2. The screenshot of the spy app icon on home launcher

The following is the structure of the spy app 5002_-2.25.1_green.APK.

Figure 3. The structure of 5002_-2.25.1_green.APK

We decompile the spy app 5002_-2.25.1_green.APK with an APK decompiling tool, as follows.

Figure 4. Decompile spy app 5002_-2.25.1_green.APK

From Figure 3 and 4, above, we can see the spy app is huge and complicated. After decompiling using Apktool it

includes 4090 smali files, with many files in assets and lib folders inside the APK file.

Next, let’s look at its AndroidManifest.xml file.

Figure 5. AndroidManifest.xml file inside the spy app’s apk file

From AndroidMainfest.xml, we can see the activity com.phoenix.client.PrerequisitesSetupActivity is the main

activity. Next, let’s start to analyze the main activity.

We analyze the execution flow of the spy app when it was installed for the first time.

Note: green marks represents the execution flow and bule marks indicates comments we added.

Digging into the Execution Flow

Let’s first look at the function onCreate() of PrerequisitesSetupActivity.

Figure 6. The function onCreate() of PrerequisitesSetupActivity

In this function, UIUtils.canAutoActivate() first checks if it can be automatically activated, if ac.txt exists in /sdcard/

it can be. In this example, it's obviously false. The program then invoke function bindCoreService() to bind

CoreService.

Actually, if the return value of function UIUtils.canAutoActivate() is true, the program could invoke

showAutoInstallerScreen() to start the activity com.phoenix.client.AutoInstallerActivity

Figure 7. The function showAutoInstallerScreen()

In the class AutoInstallerActivity, it finally executes the function bindCoreService() as well.

The definition of function bindCoreService() is shown below.

Figure 8. The function bindCoreService()

Next, we analyze the class CoreService and this.mCoreServiceConnection. The variable mCoreServiceConnection is

initialized in constructor of the class PrerequisitesSetupActivity.

Figure 9. The initialization of mCoreServiceConnection

The following is the function onCreate() of the class com.phoenix.client.CoreService.

Figure 10. The function onCreate() of class CoreService

Regarding using bindService() to start an android service, its life cycle is shown below.

bindService()---> CoreService: onCreate() ---> CoreService: onBind() ---> com.phoenix.client.PrerequisitesSetupActivity$1:

onServiceConnected().

Next, the function onServiceConnected() in the class com.phoenix.client.PrerequisitesSetupActivity$1 is able to be

executed.

Figure 11. The function onServiceConnected() of class PrerequisitesSetupActivity$1

The definition of function initialize() in the class com.phoenix.client.PrerequisitesSetupActivity is shown below. It

does some work of initializing the spy app.

Figure 12. The function initialize() of the class PrerequisitesSetupActivity

In this function initialize(), the program first gets remote control instance through invoking getRemoteControl(). In

the function getRemoteControl(), it first checks if the remote control server “com.vvt.rmtctrl.server:12512” is

ready, if it’s ready, it sends a request to remote control server to get a remote control instance. For first

installation, the remote control server “com.vvt.rmtctrl.server:12512” is not ready. So the return value of

getRemoteControl() is null.

Figure 13. The function getRemoteControl()

Next, the function isFirstLaunch() checks to see if it's first launch by checking if the file is_first_run.dat

 exists in the folder /data/data/com.android.systemupdate/app_data/. Here its return value is true. Then the

program invokes startAppEngine() to start app engine.

If it is not installing the app for the first time, the return value of RemoteControlHelper.getRemoteControl() should

be not null, which causes the program to entry into else statement branch to invoke function postInitialize().

The definition of the function postInitialize() is shown below. It can invoke the function showActivationScreen() to

display the activation activity.

Figure 14. The function postInitialize()

Next, we continue to analyze the core function startAppEngine() in the class PrerequisitesSetupActivity.

Figure 15. The function startAppEngine() of the class PrerequisitesSetupActivity

The function registerCoreServiceCallbackReceiver() dynamically registers a broadcast. It receives the broadcast

with the “wfs.service.action.engine_operation_complete” action. When the app engine operation is completed, it

sends this broadcast.

Next, the program invokes the function startAppEngine() in the class com.phoenix.client.AppInstance. In that

function it starts the service CoreService using startService().

With regards to using startService() to start an Android service, its life cycle is shown below.

startService() ---> CoreService: onCreate() --> CoreService: onStart() ---> CoreService: onStartCommand().

If this service has been bound through invoking bindService() before, the function onCreate() is invoked. This time,

the function onCreate() is not invoked. The function onStartCommand() of CoreService can be executed. The

definition of the function onStartCommand() of CoreService is shown below.

Figure 16. The function onStartCommand() of the class CoreService

It sends a message to handler to handle. The function handleMessage() in the inner class ServiceHandler of the

class CoreService is used to handle message.

Figure 17. The function handleMessage() of the inner class ServiceHandler

The function startServer() of the class CoreService invokes the function startServer() of the class

AppServiceContainer. The class AppServiceContainer inherits the class PolymorphicContainer, which implements

the method startServer() below. It creates a TCP socket server that listens on port 12514.

Figure 18. The function startServer() of the class PolymorphicContainer

Next, we analyze the function startAppEngine() in the class AppServiceContainer.

Figure 19. The function startAppEngine() in the class AppServiceContainer

a. extractPcf(): Extracts the file 5002 in assets folder to

/data/data/com.android.systemupdate/app_data/5002, which is the configuration file of the spy app.

b. extractUtilities(): Extracts some utilities in assets folder to

/data/data/com.android.systemupdate/app_data/, which includes busybox,panzer,ffmpeg and vdaemon.

c. startEngine(): That’s the function of the class AppEngine.

The definition of the function startEngine() of the class AppEngine is shown below.

Figure 20. The function startEngine() of the class AppEngine

a. loadProductConfiguration: Loads product configuration from

/data/data/com.android.systemupdate/app_data/5002. This file is encrypted with AES algorithm.

b. Initialize: Initializes the license manager.

c. RemoteControlHandler: This is the remote control handler and it’s used to handle all remote control

functions.

d. TcpSocketCmdServer: Creates the remote control server "com.vvt.rmtctrl.server:12512” and starts it. It

then transfers the command to the remote control handler to handle.

e. constructComponents(): Constructs some components of the spy app.

f. processRemoveAllEvidence(): Removes some file generated when setup.

Looking back to the function handleMessage() in the inner class ServiceHandler of class CoreService in Figure 17,

after the startAppEngine() is executed it can invoke the function broadcastFinish() in the class CoreService.

When the app engine finishes starting the app engine, it can send the broadcast below.

In the class PrerequisitesSetupActivity, the function registerCoreServiceCallbackReceiver() dynamically registers a

broadcast. It receives the broadcast with the “wfs.service.action.engine_operation_complete” action.

In Figure 15, the function startAppEngine() of the class PrerequisitesSetupActivity invoked

registerCoreServiceCallbackReceiver(), which dynamically registers a broadcast, and then receives the broadcast

with the “wfs.service.action.engine_operation_complete” action.

Figure 21. The function registerCoreServiceCallbackReceiver() of the class PrerequisitesSetupActivity

The code snippet of the function onEngineOpertaionFinish() is shown below.

Figure 22. The code snippet of the function onEngineOpertaionFinish()

The function isDeviceRooted() checks to see if the device is rooted using five methods. In this example I have

rooted my android device and install SuperSU.

The code snippet of the function showSimCardNotPresentNotification() is shown below.

Figure 23. The code snippet of the function showSimCardNotPresentNotification()

Due to no SIM card inserted in my device, it prompts an alert dialog below. By clicking the button “Proceed” the

program invokes the function showInstallScreen().

Figure 24. The dialog of inserting SIM card

As we continue to trace the function showInstallScreen(), it start InstallActivity.

The following is the function onCreate() in the class InstallActivity.

Figure 25. The function onCreate() of the class InstallActivity

The execution flow of binding CoreService is shown below.

bindCoreService()--->bindService(new Intent(((Context)this), CoreService.class), this.mCoreServiceConnection, 1)--->

CoreService: onCreate()--->CoreService: onBind() ---> com.phoenix.client.InstallActivity$1: onServiceConnected().

CoreService was bound through bindService() in Figure 8, the onCreate() and onBind() in the class CoreService only

can be invoked once, allowing the function onServiceConnected() to be executed.

Figure 26. The function onServiceConnected() of the class InstallActivity

The definition of the function initialize() in the class InstallActivity is shown below.

Figure 27. The function initialize() in the class InstallActivity

The function checkSuStatus() checks the status of super user. If the device is rooted, the program shows a dialog to

request root privileges through invoking the function getDialogAcceptSuperUser(). When the user clicks the grant

button, the function selectMode() is executed.

Figure 28. The function checkSuStatus()

Figure 29. The dialog of selecting grant option

Next, we continue to analyze the function selectMode().

Figure 30. The function selectMode()

At the end of the function selectMode(), it invokes sendMessage to send a message to the handler. The handler

receives the message to choose the corresponding branch to handle. It then invokes the function

processModeChange() in the class InstallActivity.

Figure 31. The function createHandler()

The definition of function processModeChange() is shown below.

Figure 32. The function processModeChange() in the class InstallActivity

Figure 33. The function switchContainer()

In the function switchContainer, the program sends the remote command

RemoteFunction.DEBUG_SWITCH_CONTAINER to remote control server to execute. It finally invokes the function

execute() in the class TcpSocketCmd to send the command to remote control

server("com.vvt.rmtctrl.server",port=12512) and receive the response. In the UIUtils.hideSuBinary(), it sends a

command RemoteFunction.SET_SUPERUSER_VISIBILITY to remote control server to hide SuperSu app. The

program then sends a message with type 222 to handler. The following is the code for handling the message with

type 222.

Figure 34. The code snippet for handling the message with type 222

Next, we deeply analyze how the remote control server executes the command remote

RemoteFunction.DEBUG_SWITCH_CONTAINER.

The remote control server is implemented in the class com.fx.socket.TcpSocketCmdServer. The inner class

ExecThread in the class TcpSocketCmdServer invokes the function processCommand () of

com.vvt.appengine.RemoteControlHandler to process the command

RemoteFunction.DEBUG_SWITCH_CONTAINER.

Figure 35. The function processCommand () of com.vvt.appengine.RemoteControlHandler

The list of remote commands is shown below. It includes 109 remote commands.

Figure 36. The remote commands list

The class com.vvt.appengine.RemoteControlHandler can handle 97 remote commands.

The following code is the branch of handling the command RemoteFunction.DEBUG_SWITCH_CONTAINER.

Figure 37. The function processSwithing()

The function execute() is implemented in class TcpSocketCmd. At that point, the remote server is

"vvt.polymorphic.server" and listens on port 12514. It sends a command to the remote server.

When the remote server receives the command, it invokes the function processCommand() in class

PolymorphicContainer to handle it.

Figure 38. The function processCommand() of the class PolymorphicContainer

The definition of the function switchContainer() is shown below. It is used to switch container.

Figure 39. The function switchContainer()

a. stopAppEngine(): Stops app engine and closes the server socket com.vvt.rmtctrl.server:12512.

b. stopServer():Closes the remote server socket vvt.polymorphic.server:12514.

c. setupNewContainer():Sets up a new container and starts the remote server

vvt.polymorphic.server:12514.

d. relocateData(): Copies files [fx.log, 5002, system_url.dat, phoenix_db.db, phoenix_db.db-

journal,preferences.dat, ddmmgr.db, ddmmgr.db-journal, events.db, events.db-

journal,app_container_info.dat] from /data/data/com.android.systemupdate/app_data

to /data/misc/adn.

e. execute(): Remotely starts app engine again and starts remote server com.vvt.rmtctrl.server:12512.

The function setupNewContainer() is implemented in the super class com.phoenix.client.AppServiceContainer of the class

PolymorphicContainer.

Figure 40. The function setupNewContainer()

The definition of the function startRootProcess() in the class com.vvt.polymorphic.PolymorphicHelper is shown

below.

Figure 41. The function startRootProcess() of the class PolymorphicHelper

Next we analyze some key functions one by one, as follows.

a. ShellUtil.createDirectory: Creates the folder /data/misc/adn.

b. DaemonHelper.backupApp: Backs up app APK file com.android.systemupdate-1.apk in folder

/data/misc/adn.

c. extractAssets: Copies files from /data/data/com.android.systemupdate/app_data to /data/misc/adn.

d. PolymorphicHelper.installKillerMobileCallRecording: Installs mobile call recording, the lib libasound.so

implements the functionality.

e. PolymorphicHelper.setupExecutables: Sets up some executables. It includes /data/misc/adn/busybox,

/data/misc/adn/ffmpeg, /data/misc/adn/vdaemon.

f. createStartupScript: Creates the startup script maind in folder /data/misc/adn. The script is shown below.

g. setupRebootHook: Sets up reboot hook scripts, it creates two scripts /system/su.d/0000adam.sh

and /system/etc/install-recovery-2.sh.

This script 0000adam.sh is executed when the device is booted. The folder /system/su.d should be a

daemon directory for SuperSU, the scripts in this directory are executed when the device is booted.

That’s the startup program.

Because SuperSU has already been installed on my Nexus 5, the original install-recovery.sh was modified

by SuperSU as follows:

Figure 42. The script /system/etc/install-recovery.sh

The script file /system/etc/install-recovery.sh is added into init.rc, so install-recovery.sh is executed when

booting the device. In turn, the script install-recovery-2.sh can be executed.

h. DaemonHelper.startProcessAndWait: Executes startup script /data/misc/adn/maind.

i. PolymorphicHelper.installXposed: Installs Xposed hook framework.

Looking back at Figure 33 and 34, once the program finishes switching container, it sends a message with type 226

to handler. The following code is used to handle the message with type 226.

Figure 43. The code of handling the message with type 226

In the function notifyUser of the class InstallActivity, it hides SuperSu in full mode and prompts a dialog to indicate

rebooting the device.

Figure 44. The dialog to indicate rebooting the device.

When you tap the button “Restart Now”, the program executes command “/data/misc/adn/busybox reboot -f” to

reboot device.

Additionally, I found some URLs in the spy app.

Finally, I draw the workflow of the first installation of the spy app.

Figure 45. The workflow of the first installation of FlexiSpy for Android

At this point we complete the whole analysis of the spy app’s first installation. We can see the spy app is designed

sophisticatedly and rather complicated. Next, we will deep look into the startup script.

Part 2: Deep Look into the Startup Script

In part 1, of our FortiGuard Labs examination of the Android spy app FlexiSpy, we were able to see that the startup

script /system/su.d/0000adam.sh could be executed when the device is rebooted. In this second part we will take

a deeper look into its startup script. The following is the script 0000adam.sh.

.

Figure 1. The startup script /system/su.d/0000adam.sh

The following is the script maind.

Figure 2. The script /data/misc/adn/maind

In the maind, the script uses app_process to execute a java class com.vvt.daemon.MainDaemonMain. The

class MainDaemonMain is in the maind.zip. We can see that maind.zip is a jar format and includes a classes.dex.

Figure 3. The jar file maind.zip

The classes.dex in maind.zip contains the core code of the classes.dex in the spy app 5002_-

2.25.1_green.APK.

Let’s take a deep look into the class com.vvt.daemon.MainDaemonMain. The following is the function main() of

class MainDaemonMain. It first initializes the log file /data/misc/adn/fx.log. All log info could be written into this

log.

Figure 4. The function main() of class MainDaemonMain

Next, we will continue to look into the function init().

Figure 5. The function init()

We choose some key functions to analyze.

a. switchSELinuxModeIfNeeded(): Switches SELinux mode to PERMISSIVE if need.

b. writeMethodToFile: Writes string “STARTUP_SCRIPT” into /data/misc/adn/app_start_up_method. It

represents the way of the app will startup.

c. patchSeLinux(): This is used to patch SELinux on Samsung device with android 4.4 or later.

d. waitSystemReady: Waits until the system is ready.

e. syncMonitor: Executes startup script /data/misc/adn/pmond.

f. syncBug: Executes startup script /data/misc/adn/callmond.

g. syncSystemDaemon: Changes the shell to 'system' user and executes startup script /data/misc/adn/psysd.

h. prepareServerSocket: Creates LocalServerSocket “socket:com.fx.socket.psysd” to communicate for the

crossing process.

i. startServer: In RootProcessContainer, it creates server socket:vvt.polymorphic.server port:12514 and start

server.

j. startRoutineTask: Starts routine tasks(syncMonitor and syncBug) , which are executed repeatedly at

regular intervals with Timer.

k. startAppEngine: Starts app core engine by sending a command to the remote server

“vvt.polymorphic.server:12514” started in startServer().

Figure 6. The function startAppEngine()

The following is the code snippet for handling the command in remote server
“vvt.polymorphic.server:12514”.

Figure 7. The code snippet of handling command RemoteStartAppEngine

The code snippet of the function startAppEngine() in class com.vvt.daemon. RootProcessContainer is

shown below. It starts the engine in RunningMode.FULL mode.

Figure 8. The code snippet in function startAppEngine() of class RootProcessContainer

 In Figure 20 of Part 1, we analyzed the function startEngine() of class AppEngine.

From the analysis above, we learn that some daemon scripts could be executed during execution of maind.

1. /data/misc/adn/pmond is a process monitoring daemon.

2. /data/misc/adn/callmond is the call monitoring daemon. It can start up callmgrd inside it.

3. /data/misc/adn/callmgrd is the call manager daemon.

4. /data/misc/adn/psysd is a system daemon.

After rebooting the device, we can see these daemon processes are always running.

Figure 9. The running daemon processes after rebooting device.

We also can see two tcp sockets listen on port 12512 and 12514. They are the remote server “vvt.polymorphic.server

port:12514” and “com.vvt.rmtctrl.server:12512”. The server “vvt.polymorphic.server” handles some command related

to the container, and the server “com.vvt.rmtctrl.server” handles the remote control commands related to spy

activities.

Figure 10. The servers listen on port 12512 and 12514

The following is some of comnunication traffic with the two servers on port 12512 and 12514.

Figure 11. The traffic of tcp session on port 12512

Figure 12. The traffic of tcp session on port 12512.

Figure 13. The traffic of tcp session on port 12514.

At this point, we have completed the analysis of the startup script. It starts five daemon processes: maind, pmond,

callmond, callmgrd and psysd. In the process maind, it starts the app engine as well as two remote server

“com.vvt.rmtctrl.server:12512” and “vvt.polymorphic.server port:12514”, and the server

“com.vvt.rmtctrl.server:12512” is a remote control server that processes remote commands.

Next, let’s analyze how the spy app work after rebooting the device. When we launch the spy app on the home

launcher, you see the following screenshot. It’s an activation view. We need to input a license key to activate the

product before it can begin spying.

Figure 14. The screen of activation

We then look into the execution of launching the spy app after first installation. Using the process found in Figure

12 of part 1, of our analysis, we will now analyze the function initialize() of class PrerequisitesSetupActivity again.

Figure 15. The function initialize() of class PrerequisitesSetupActivity

This time the return value of RemoteControlHelper.getRemoteControl() is not null because the remote control

server “com.vvt.rmtctrl.server:12512” has been started during execution of the startup script. The program can

then invoke the function postInitialize().

Figure 16. The function postInitialize()

Since the return value of the function isFullMode() is true, it invokes the function showActivationScreen() to show

the activation screen.

We were not able to find the license key for the spy app in the leaked material we were able to gather. So, in order

to analyze how the spy app launches its spying activities, we will need to bypass the license. In next part, we will

provide an analysis of the product activation process and bypass the license.

Part 3: The Workflow of Product Activation and How to Bypass License

To look into how the spy app launches the spying activities, we need to bypass the license. In this part we will

analyze the process of product activation and bypass the license.

The Workflow of Activation Product

Firstly, we analyze the product activation. We input a random activation code in text box and click the button

“Activate”.

Figure 1. The screen of activation

Figure 2. Activating Software

Figure 3. Connection Error when activating software

From Figure 3, we can see there is a connection error when activating software. It means that it needs to connect

the remote server to complete the activation of product.

Then let’s see what happens when I click the button “Activate”. The following is the function onCreate() of the

class ActivationActivity.

Figure 4. The function onCreate() of the class ActivationActivity

The function activateProduct() is used to activate the product.

Figure 5. The function activateProduct()

In function execute(), it send the command RemoteFunction.ACTIVATE_PRODUCT to the remote control server

“com.vvt.rmtctrl.server:12512”. When the server receives the command, it handles the command

RemoteFunction.ACTIVATE_PRODUCT to activate the product. In part 2, we can see the remote control server

“com.vvt.rmtctrl.server:12512” has been started in the startup script /data/misc/adn/maind.

The function processCommand of the class RemoteControlHandler is used to handle the command. The following

is the code snippet for handling the command RemoteFunction.ACTIVATE_PRODUCT.

Figure 6. The code snippet of processing command RemoteFunction.ACTIVATE_PRODUCT

The following is the code snippet of the function processingNextRequest() in inner class CommandExecutor of the

class com.vvt.phoenix.prot.CommandServiceManager.

Figure 7. The code snippet of the function processingNextRequest()

In the function doCallRecordingAudioSource(), it could connect the remote http server “httx://test-

client.mobilefonex.com/gateway/unstructured”, this URL is not available. The program throws an exception

‘Unable to resolve host "test-client.mobilefonex.com": No address associated with hostname’.

After executing function doCallRecordingAudioSource(), the program could invoke doKeyExchange() which is used

to do key exchange operation. It also connects the remote http server “httx://test-

client.mobilefonex.com/gateway/unstructured”, the program throws an exception ‘KeyExchange Error: Unable to

resolve host "test-client.mobilefonex.com": No address associated with hostname’.

Because it fails to connect the remote http server, the response is obviously failed. In turn, the program invokes

the function onFinish() in the class com.vvt.activation_manager.ActivationManager.

The definition of the function onFinish() in the class com.vvt.activation_manager.ActivationManager is shown

below. The class ActivationManager implements the interface DeliveryListener.

Figure 8. The function onFinish() in the class com.vvt.activation_manager.ActivationManager

If the activation is failed, it could invoke the function resetLicense() in the class com.vvt.license.

LicenseManagerImpl to reset the license. It causes an error "Unable to connect to server.\nCheck your internet

connection and try again.". The error is exactly same as the one we can see in Figure 3.

If the activation is successful, the program could invoke function handleResponseActivate() to update the license.

Figure 9. The function handleResponseActivate() of the class ActivationManager

Regardless if the activation is successful, the progrom could finally invoke the onLicenseChange() in class

com.vvt.appengine.AppEngine.

Figure 10. The function onLicenseChange() of the class com.vvt.appengine.AppEngine

Figure 11. The function applyCurrentLicense()of the class AppEngineHelper

In the function applyCurrentLicense(), it first gets the current configuration, then gets supported feature and

remote commands depending on the configuration, then updates remote commands and feature components.

Figure 12. The function getCurrentConfiguration()

The configuration id is got from license file, if activation is not successful, the configuration is -1.

Figure 13. The function updateFeatures()

In the function updateFeatures(), it updates the features including remote command manager, event capture, spy

call, database monitoring,etc.

So far we have understood the workflow of the product activation. in next section, let’s start to bypass the license.

How to Bypass License

1. Patch the configuration id. Back to Figure 12, we need to patch the value of v1. It’s the configuration id.
The configuration file of FlexiSpy for android is the file 5002 in folder /data/misc/adn/ which is encrypted

with AES(AES/CBC/PKCS5Padding) algorithm. You can download the decrypted configuration file from

here, which is a XML format file(5002_decrypt). Then the program parses the XML file and creates configuration list.

The following is the configuration list.

Figure 14. The configuration list

The list includes some pairs of ID and features. Each ID supported different features. Here we choose ID

210, it supports the following features.

Figure 15. The configuration ID 210 and supported features

The patched smali code is shown below.

Figure 16. The patched smali code of function getCurrentConfiguration

2. Patch the function isActivated in the class com.vvt.license. LicenseManagerImpl, we can patch the
function getLicenseStatuss and isMd5Valid and have their return value are always true.

Figure 17. The function isActivated to be patched

 We patch the function getLicenseStatus and isMd5Valid as follows.

Figure 18. The patched smali code of the function getLicenseStatus

Figure 19. The patched samli code of function isMd5Valid

3. Patch the function updateGui of class com.phoenix.client.ActivationActivity.

Figure 20. The patched smali code of function updateGui

The corresponding java code in the function updateGui () in the class

com.phoenix.client.ActivationActivity is shown below. This code is located in client.

Figure 21. The decompiled java code in function updateGui

4. Patch the function activate in the class com.vvt.appengine.exec.ExecActivate.

Figure 22. The function activate in the class ExecActivate to be patched

Figure 23. The patched smali code of the function activate

5. Patch smali code in PrefIMCaptureSettings.smali for the class com.vvt.preference.PrefIMCaptureSettings.
We patch the functions isXXXXXEnable() to have their return value be true.

Figure 24. The patched PrefIMCaptureSettings.smali

6. Patch the function manageImCapture in the class com.vvt.appengine. AppEngineHelper. We only patch
this function to enable IM capture, if you want to enable other spy functionality, you can find the related
function in class AppEngineHelper and patch it. This function is used to manage IM capture, here we patch
its local variables like isXXXEnabled and isXXXSupported as follows.

Figure 25. The patched smali code of the function manageImCapture

when you patch the six parts of smali code, one thing to note is that only the 3rd patch is located in client

(classes.dex in 5002_-2.25.1_green.APK), other five patches are located in code in

server(/data/misc/adn/maind.zip). The following is the steps of repackaging app.

a. Patch the 3rd smali code in classes.dex in APK file 5002_-2.25.1_green.APK, repackage the APK
with apktool, then sign and reinstall it.

b. Patch the other five smali codes in classes.dex in jar file maind.zip, compress it and push it into
the folder /data/misc/adn/maind.zip on the device.

c. Reboot the device.

After patching the six parts of smali codes, we can bypass the license. For now, the patched spy app has an ability

of spying IM. In next part, we will give two IM spy cases of FlexiSpy for android, they are Skype and WeChat.

Part 4: Two Spy cases on Skype and WeChat

In Part 3, we analyzed the workflow of product activation and bypassed the license. In this part, we will analyze two

IM spy cases of FlexiSpy for android. Let’s look into how FlexiSpy spies Skype and WeChat.

Spy on Skype for android

This section I will give an analysis of spying Skype. FlexiSpy uses FileObserver to monitor database file and shared

preferences file in private folder in Skype. Generally, in IM software on mobile device the chat messages are stored

as database file.

The following is the code snippet of monitoring database file

/data/data/com.skype.raider/files/kevinlu0306/main.db and shared preferences file.

Figure 1. The code snippet ofr monitoring database and prefrencens file

Once a change is detected on the monitored file, it could do some things on monitored file. The database file

main.db is not decrypted, so it’s easier to spy Skype. It can get the chat messages through only executing some

SQL sentences.

The following is the key code snippet of getting chat messages from database.

Figure 2. The key code snippet of getting chat messages from database

The function SkypeCaptureHelper.getCurrentOwner() is used to get skype account name.

Figure 3. The function getCurrentOwner() of SkypeCaptureHelper

Figure 4. The function getCurrentOwner of SkypeUtils

The following is the content of shared.xml. It stores the account name inside Account tag.

Figure 5. The shared.xml of Skype app

Figure 6. The function CaptureNewEvents

In this line, v3 = arg15.rawQuery(v12, new String[]{arg16 + "", arg19 + ""});

This code is used to execute SQL select sentence. This SQL select query is shown below.

SELECT DISTINCT m.id, convo_id, chatmsg_status, chatmsg_type, m.type, body_xml, m.timestamp, author, from_dispname,

participant_count, participants, displayname FROM Messages m LEFT JOIN Conversations conv ON m.convo_id = conv.id LEFT

JOIN (SELECT * FROM Chats GROUP BY (conv_dbid)) as c ON m.convo_id = c.conv_dbid WHERE m.id > 1592 AND m.id <= 1651

AND (m.type IN (61, 63, 68, 70, 201, 202, 253, 254, 255))ORDER BY m.id DESC

We copy the database file main.db in folder /data/data/com.skype.raider/files/kevinlu0306/ to local disk and open

it using SQLite Expert Personal 4.2 tool below. When we execute the above SQL query, the result of query is the

record that includes a tested chat message sent by me. The record includes chat message content, timestamp, chat

message type, message sender, message participants, etc. In this test case, the chat message sent is “Test

hahahha”.

Figure 7. The test message of Skype app

Figure 8. The result of executing SQL query to get the chat message

The table Messages stores the information related to chat messages.

Figure 9. The table Message stored chat messages

Let’s continue to trace the function keepConversation.

Figure 10. The function keepConversation

The log file related to chat message is shown below.

Figure 11. The log file related to chat message

The spyware could create a folder .skp_store in path /data/misc/adn/, it includes two sub-directories

owner_profiles and user_profiles under directory .skp_store. The directory owner_profiles stores the profile

files(image file format) of owner, and the directory user_profiles stores the profile files(image file format) of

user(contacts).

Figure 11. Two profiles folder generated when spying Skpye

Figure 12. Saved files in folder owner_profiles

Figure 13. Saved file in folder user_profiles

The log file of saving owner profiles and user profiles is shown below.

Figure 14. The log file of saving owner profiles and user profiles

Spy on WeChat for android

This section I will give an analysis of spying Wechat. There’s a minor difference between spying Skype and spying

Wechat. For Skype, its database file is not encrypted, FlexiSpy can directly monitor the database and execute SQL

sentences to get the chat messages. But for Wechat, its database file is encrypted, FlexiSpy cannot directly execute

SQL queries to get the chat messages, so it’s required to decrypt the database file before executing SQL queries.

First, we give the screenshot of sending the chat message tested in Wechat.

Figure 15. The message tested in Wechat and the version of Wechat

Like spying Skype, Flexispy monitors the database file in Wechat using FileObserver when spying Wechat.

Additionally, it also monitors shared preference file system_config_prefs.xml.

Figure 16. The function StartDatabaseMonitorWithDatabasePath

Figure 17. The function startSystemConfigPreFileObserver()

Once a change is detected on the monitored file, it could do some things on monitored file.

https://developer.android.com/reference/android/os/FileObserver.html

In the class com.vvt.capture.wechat.WeChatUtil, the function copyDatabaseToLocalFolderAndDecrypt is used to

copy database file from private folder of Wechat to local folder, get the decryption key and then decrypt the

database file that contains Wechat chat messages.

Before copying database in Wechat to local folder, it needs to find the path of database in Wechat.

The following function getCurrentOwner() is used to get folder name of current owner in Wechat.

Figure 18. The function getCurrentOwner()

The function WeChatUtil.getUin() is used to get uin from shared preferences file

/data/data/com.tencent.mm/shared_prefs/system_config_prefs.xml. The following is the screenshot of file

system_config_prefs.xml.

Figure 19. The screenshot of file system_config_prefs.xml.

The folder name of current owner is a MD5 hash code ed539505124b60982bc82d875e61a2c0 that is calculated

from md5(“mm1028071100”). So the full path of the database file

/data/data/com.tencent.mm/MicroMsg/ed539505124b60982bc82d875e61a2c0/EnMicroMsg.db.

The database file EnMicroMsg.db is the message database of Wechat and encrypted with AES algorithm.

Next, I look into the function copyDatabaseToLocalFolderAndDecrypt and see how to decrypt the database file

EnMicroMsg.db.

The following code is the key code snippet of decrypting the encrypted message database EnMicroMsg.db.

Figure 20. The key code snippet to decrypt EnMicroMsg.db

The function getDecrypKey is used to get the decryption key.

Figure 21. The function getDecrypKey

The algorithm of getting decryption key is shown below.

Decryption KEY = MD5(IMEI + UNI)[0:7]

Md5 = 5f834bde5191807f2812ff49eba5fe36

KEY = 5f834bd

After getting the decryption key, Flexispy uses SQLCipher to decrypt the database file EnMicroMsg.db.

The binary file /data/misc/adn/panzer is SQLCipher version 3.11.0 which is an open source extension to SQLite that

provides transparent 256-bit AES encryption of database files.

The SQL sentence of decrypting database in SQLCipher is shown below.

PRAGMA key = '5f834bd';

PRAGMA cipher_use_hmac = OFF;

PRAGMA cipher_page_size = 1024;

PRAGMA kdf_iter = 4000;

ATTACH DATABASE "decrypted_database.db" AS decrypted_database KEY "";

SELECT sqlcipher_export("decrypted_database");

DETACH DATABASE decrypted_database;

The decrypted database file decrypted_database.db is located in folder /data/misc/adn/com.tencent.mm/.

At this point, you can open decrypted_database.db with SQLite Expert Personal tool as follows. It contains all chat

messages in Wechat.

Figure 22. The decrypted database of Wechat in SQLite Expert Personal tool

Next, the program could start reading the decrypted database decrypted_database.db, and execute SQL query to

get chat message record. The following is some key code snippet.

Figure 23. The function captureNewEvents

The following is the key code snippet of the function keepConversation.

Figure 24. The key code snippet of the function keepConversation

The function toString() of the class WechatData, which includes chat message text, timestamp, sender,

participant(receiver),etc.

Figure 25. The function toString() of class WechatData

The following is the log file from logcat. We can see the chat message text is “$$$ testwechat” tested by me.

Figure 26. The log file including the chat message tested.

Figure 27. The log file including chat message and participant

From above analysis, Flexispy can spy the chat message of Wechat, the chat message text “$$$ testwechat” is

corresponding with that one in the screenshot of sending chat message in Wechat.

Summary

The following is the list of app spy supported by FlexiSpy for android.

Figure 28. The list of app spy supported

We can see the IM apps supported includes Facebook, Hangouts, Hike, Instagram, Line, QQ, Skype, Snapchat,

Telegram, Tinder, Viber, WhatsApp, WeChat. They all are the most popular IM software. Besides, FlexiSpy for

android can spy on camera, email, yahoo, browser, audio, chrome, calendar, etc.

Part 5: Summary and Solution

Summary

Through the previous four parts of detailed analysis of FlexiSpy for android, we can see FlexiSpy for android is all-

in-one spyware and designed sophisticatedly and very complicated. The spy app supports full IM tracking, VoIP call

recording& live call interception, it also can spy on messages, GPS, Multimedia, Internet, Applicaions, etc.

In order to support all spy features, it’s required that the android device is rooted. The spy app setups the startup

script. When the device is reboot, the startup script could be executed to start some daemon processes, we have

analyzed these daemon processes in part 2. FlexiSpy uses FileObserver to monitor database file and shared

preferences file in private folder in IM apps. Generally, in IM software on mobile device the chat messages are

stored as database file. Some databases might not be encrypted like Skype app, it’s easy to execute some SQL

sentences to gain the sensitive info related to chat message after rooting the android device. Other databases

might be encrypted like WeChat app, it seems that it’s more secure, but the private key is still calculated via

reversing engineering the IM app. Once the private key is got, you can decrypt the database using it.

Even when I uninstall FlexiSpy for android app (package: com.android.systemupdate), the spy activity is always

ongoing. I tested Skype and WeChat app after uninstall the spy app “com.android.systemupdate”, it’s still

successful to monitor the chat message for Skype and WeChat. In part 4, we can see the spy functionality is in

these daemon processes. The working directory of FlexiSpy for Android is /data/misc/adn/. The list of files in folder

/data/misc/adn/ is shown below.

Figure 1. The list of files in folder /data/misc/adn/

The file fx.log in the folder /data/misc/adn/ is the log of FlexiSpy for android.

For normal users, if you found the file fx.log in folder /data/misc/adn/, it can confirm your android device is being

spied by FlexiSpy for android, you can follow the steps below to remove FlexiSpy.

1. Uninstall package com.android.systemupdate.
2. Remove the folder /data/misc/adn and the script files /system/su.d/0000adam.sh and

/system/etc/install-recovery-2.sh at root shell.

3. Remove some cached DEX files marked in red below in folder /data/dalvik-cache/.

Figure 2. The list of files in the folder /data/dalvik-cache/

Solution

The spy app sample is detected by Fortinet Antivirus signature Android/Kresoc.A!tr.bdr.

IoCs

hxxp://test-client.mobilefonex.com

hxxp://client.mobilefonex.com

Hash

SHA256: 2a1e5a7dafa54a23fe9050f1fdd1286d3bdfb75a80a90cafebfdbbc451f4f9a4

Reference

https://github.com/Te-k/flexidie

http://www.cybermerchantsofdeath.com/blog/2017/04/23/FlexiSpy.html

http://www.cybermerchantsofdeath.com/blog/2017/04/23/FlexiSpy-pt2.html

https://github.com/Te-k/flexidie
http://www.cybermerchantsofdeath.com/blog/2017/04/23/FlexiSpy.html
http://www.cybermerchantsofdeath.com/blog/2017/04/23/FlexiSpy-pt2.html

